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Preface
Hands-on deep learning with Keras is a concise yet thorough introduction to
modern neural networks, artificial intelligence, and deep learning technologies
designed especially for software engineers and data scientists.
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Mission
The book presents more than 20 working deep neural networks coded in Python
using Keras, a modular neural network library that runs on top of either Google's
TensorFlow or Lisa Lab's Theano backends.

The reader is introduced step by step to supervised learning algorithms such as
simple linear regression, classical multilayer perceptron, and more sophisticated
deep convolutional networks and generative adversarial networks. In addition, the
book covers unsupervised learning algorithms such as autoencoders and generative
networks. Recurrent networks and long short-term memory (LSTM) networks
are also explained in detail. The book goes on to cover the Keras functional API
and how to customize Keras in case the reader's use case is not covered by Keras's
extensive functionality. It also looks at larger, more complex systems composed of
the building blocks covered previously. The book concludes with an introduction to
deep reinforcement learning and how it can be used to build game playing AIs.

Practical applications include code for the classification of news articles into
predefined categories, syntactic analysis of texts, sentiment analysis, synthetic
generation of texts, and parts of speech annotation. Image processing is also
explored, with recognition of handwritten digit images, classification of images into
different categories, and advanced object recognition with related image
annotations. An example of identification of salient points for face detection will be
also provided. Sound analysis comprises recognition of discrete speeches from
multiple speakers. Reinforcement learning is used to build a deep Q-learning
network capable of playing games autonomously.

Experiments are the essence of the book. Each net is augmented by multiple
variants that progressively improve the learning performance by changing the input
parameters, the shape of the network, loss functions, and algorithms used for
optimizations. Several comparisons between training on CPUs and GPUs are also
provided.
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How deep learning is
different from machine
learning and artificial
intelligence
Artificial intelligence (AI) is a very large research field, where machines show
cognitive capabilities such as learning behaviours, proactive interaction with the
environment, inference and deduction, computer vision, speech recognition,
problem solving, knowledge representation, perception, and many others (for more
information, refer to this article: Artificial Intelligence: A Modern Approach, by S.
Russell and P. Norvig, Prentice Hall, 2003). More colloquially, AI denotes any
activity where machines mimic intelligent behaviors typically shown by humans.
Artificial intelligence takes inspiration from elements of computer science,
mathematics, and statistics.

Machine learning (ML) is a subbranch of AI that focuses on teaching computers
how to learn without the need to be programmed for specific tasks (for more
information refer to Pattern Recognition and Machine Learning, by C. M.
Bishop, Springer, 2006). In fact, the key idea behind ML is that it is possible to
create algorithms that learn from and make predictions on data. There are three
different broad categories of ML. In supervised learning, the machine is presented
with input data and desired output, and the goal is to learn from those training
examples in such a way that meaningful predictions can be made for fresh unseen
data. In unsupervised learning, the machine is presented with input data only and
the machine has to find some meaningful structure by itself with no external
supervision. In reinforcement learning, the machine acts as an agent interacting with
the environment and learning what are the behaviours that generate rewards.

Deep learning (DL) is a particular subset of ML methodologies using artificial
neural networks (ANN) slightly inspired by the structure of neurons located in the
human brain (for more information, refer to the article Learning Deep
Architectures for AI, by Y. Bengio, Found. Trends, vol. 2, 2009). Informally, the
word deep refers to the presence of many layers in the artificial neural network, but
this meaning has changed over time. While 4 years ago, 10 layers were already

17



sufficient to consider a network as deep, today it is more common to consider a
network as deep when it has hundreds of layers.

DL is a real tsunami (for more information, refer to Computational Linguistics and
Deep Learning by C. D. Manning, "Computational Linguistics", vol. 41, 2015) for
machine learning in that a relatively small number of clever methodologies have
been very successfully applied to so many different domains (image, text, video,
speech, and vision), significantly improving previous state-of-the-art results
achieved over dozens of years. The success of DL is also due to the availability of
more training data (such as ImageNet for images) and the relatively low-cost
availability of GPUs for very efficient numerical computation. Google, Microsoft,
Amazon, Apple, Facebook, and many others use those deep learning techniques
every day for analyzing massive amounts of data. However, this kind of expertise is
not limited any more to the domain of pure academic research and to large
industrial companies. It has become an integral part of modern software production
and therefore something that the reader should definitively master. The book does
not require any particular mathematical background. However, it assumes that the
reader is already a Python programmer.
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What this book covers
Chapter 1, Neural Networks Foundations, teaches the basics of neural networks.

Chapter 2, Keras Installation and API, shows how to install Keras on AWS,
Microsoft Azure, Google Cloud, and your own machine. In addition to that, we
provide an overview of the Keras APIs.

Chapter 3, Deep Learning with ConvNets, introduces the concept of convolutional
networks. It is a fundamental innovation in deep learning that has been used with
success in multiple domains, from text to video to speech, going well beyond the
initial image processing domain where it was originally conceived.

Chapter 4, Generative Adversarial Networks and WaveNet, introduces generative
adversarial networks used to reproduce synthetic data that looks like data generated
by humans. And we will present WaveNet, a deep neural network used for
reproducing human voice and musical instruments with high quality.

Chapter 5, Word Embeddings, discusses word embeddings, a set of deep learning
methodologies for detecting relationships between words and grouping together
similar words.

Chapter 6, Recurrent Neural Networks – RNN, covers recurrent neural networks, a
class of network optimized for handling sequence data such as text.

Chapter 7, Additional Deep Learning Models, gives a brief look into the Keras
functional API, regression networks, autoencoders, and so on.

Chapter 8, AI Game Playing, teaches you deep reinforcement learning and how it
can be used to build deep learning networks with Keras that learn how to
play arcade games based on reward feedback.

Appendix, Conclusion, is a crisp refresher of the topics covered in this book and
walks the users through what is new in Keras 2.0.
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What you need for this
book
To be able to smoothly follow through the chapters, you will need the following
pieces of software:

TensorFlow 1.0.0 or higher
Keras 2.0.2 or higher
Matplotlib 1.5.3 or higher
Scikit-learn 0.18.1 or higher
NumPy 1.12.1 or higher

The hardware specifications are as follows:

Either 32-bit or 64-bit architecture
2+ GHz CPU
4 GB RAM
At least 10 GB of hard disk space available
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Who this book is for
If you are a data scientist with experience in machine learning or an AI programmer
with some exposure to neural networks, you will find this book a useful entry point
to deep learning with Keras. Knowledge of Python is required for this book.
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Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In addition, we load the true labels into Y_train and Y_test respectively and
perform a one-hot encoding on them."

A block of code is set as follows:

from keras.models import Sequential
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='random_uniform'))

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

# 10 outputs
# final stage is softmax
model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,)))
model.add(Activation('softmax'))
model.summary()

Any command-line input or output is written as follows:

pip install quiver_engine

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Our
simple net started with an accuracy of 92.22%, which means that about
eight handwritten characters out of 100 are not correctly recognized."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.
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Downloading the example
code
You can download the example code files for this book from your account at http://w
ww.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtp
ub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublis
hing/Deep-Learning-with-Keras. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/PacktPublishing/. Check them out!
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Downloading the color
images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.pa
cktpub.com/sites/default/files/downloads/DeepLearningwithKeras_ColorImages.pdf.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books-maybe a mistake in the text
or the code-we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions of
this book. If you find any errata, please report them by visiting http://www.packtpub.co
m/submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/su
pport and enter the name of the book in the search field. The required information
will appear under the Errata section.
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.
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Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.
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Neural Networks
Foundations
Artificial neural networks (briefly, nets) represent a class of machine learning
models, loosely inspired by studies about the central nervous systems of mammals.
Each net is made up of several interconnected neurons, organized in layers, which
exchange messages (they fire, in jargon) when certain conditions happen. Initial
studies were started in the late 1950s with the introduction of the perceptron (for
more information, refer to the article: The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain, by F.
Rosenblatt, Psychological Review, vol. 65, pp. 386 - 408, 1958), a two-layer
network used for simple operations, and further expanded in the late 1960s with the
introduction of the backpropagation algorithm, used for efficient multilayer
networks training (according to the articles: Backpropagation through Time: What
It Does and How to Do It, by P. J. Werbos, Proceedings of the IEEE, vol. 78, pp.
1550 - 1560, 1990, and A Fast Learning Algorithm for Deep Belief Nets, by G. E.
Hinton, S. Osindero, and Y. W. Teh, Neural Computing, vol. 18, pp. 1527 - 1554,
2006). Some studies argue that these techniques have roots dating further back
than normally cited (for more information, refer to the article: Deep Learning in
Neural Networks: An Overview, by J. Schmidhuber, vol. 61, pp. 85 - 117, 2015).
Neural networks were a topic of intensive academic studies until the 1980s, when
other simpler approaches became more relevant. However, there has been a
resurrection of interest starting from the mid-2000s, thanks to both a breakthrough
fast-learning algorithm proposed by G. Hinton (for more information, refer to the
articles: The Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting, Neural Networks, by S. Leven, vol. 9, 1996
and Learning Representations by Backpropagating Errors, by D. E. Rumelhart,
G. E. Hinton, and R. J. Williams, vol. 323, 1986) and the introduction of GPUs,
roughly in 2011, for massive numeric computation.

These improvements opened the route for modern deep learning, a class of neural
networks characterized by a significant number of layers of neurons, which are able
to learn rather sophisticated models based on progressive levels of abstraction.
People called it deep with 3-5 layers a few years ago, and now it has gone up to
100-200.

This learning via progressive abstraction resembles vision models that have evolved
over millions of years in the human brain. The human visual system is indeed
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organized into different layers. Our eyes are connected to an area of the brain
called the visual cortex V1, which is located in the lower posterior part of our
brain. This area is common to many mammals and has the role of discriminating
basic properties and small changes in visual orientation, spatial frequencies, and
colors. It has been estimated that V1 consists of about 140 million neurons, with 10
billion connections between them. V1 is then connected with other areas V2, V3,
V4, V5, and V6, doing progressively more complex image processing and
recognition of more sophisticated concepts, such as shapes, faces, animals, and
many more. This organization in layers is the result of a huge number of attempts
tuned over several 100 million years. It has been estimated that there are ~16
billion human cortical neurons, and about 10%-25% of the human cortex is devoted
to vision (for more information, refer to the article: The Human Brain in Numbers:
A Linearly Scaled-up Primate Brain, by S. Herculano-Houzel, vol. 3, 2009). Deep
learning has taken some inspiration from this layer-based organization of the human
visual system: early artificial neuron layers learn basic properties of images, while
deeper layers learn more sophisticated concepts.

This book covers several major aspects of neural networks by providing working
nets coded in Keras, a minimalist and efficient Python library for deep learning
computations running on the top of either Google's TensorFlow (for more
information, refer to https://www.tensorflow.org/) or University of Montreal's Theano
(for more information, refer to http://deeplearning.net/software/theano/) backend. So, let's
start.

In this chapter, we will cover the following topics:

Perceptron
Multilayer perceptron
Activation functions
Gradient descent
Stochastic gradient descent
Backpropagation
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Perceptron
The perceptron is a simple algorithm which, given an input vector x of m values
(x1, x2, ..., xn) often called input features or simply features, outputs either 1 (yes)
or 0 (no). Mathematically, we define a function:

Here, w is a vector of weights, wx is the dot product , and b is a bias. If you
remember elementary geometry, wx + b defines a boundary hyperplane that
changes position according to the values assigned to w and b. If x lies above the
straight line, then the answer is positive, otherwise it is negative. Very simple
algorithm! The perception cannot express a maybe answer. It can answer yes (1) or
no (0) if we understand how to define w and b, that is the training process that will
be discussed in the following paragraphs.
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The first example of Keras
code
The initial building block of Keras is a model, and the simplest model is called
sequential. A sequential Keras model is a linear pipeline (a stack) of neural
networks layers. This code fragment defines a single layer with 12 artificial
neurons, and it expects 8 input variables (also known as features):

from keras.models import Sequential
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='random_uniform'))

Each neuron can be initialized with specific weights. Keras provides a few choices,
the most common of which are listed as follows:

random_uniform: Weights are initialized to uniformly random small values in
(-0.05, 0.05). In other words, any value within the given interval is equally
likely to be drawn.
random_normal: Weights are initialized according to a Gaussian, with a zero
mean and small standard deviation of 0.05. For those of you who are not
familiar with a Gaussian, think about a symmetric bell curve shape.
zero: All weights are initialized to zero.

A full list is available at https://keras.io/initializations/.
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Multilayer perceptron —
the first example of a
network
In this chapter, we define the first example of a network with multiple linear layers.
Historically, perceptron was the name given to a model having one single linear
layer, and as a consequence, if it has multiple layers, you would call it multilayer
perceptron (MLP). The following image represents a generic neural network with
one input layer, one intermediate layer and one output layer.

In the preceding diagram, each node in the first layer receives an input and fires
according to the predefined local decision boundaries. Then the output of the first
layer is passed to the second layer, the results of which are passed to the final
output layer consisting of one single neuron. It is interesting to note that this layered
organization vaguely resembles the patterns of human vision we discussed earlier.

The net is dense, meaning that each neuron in a layer is connected
to all neurons located in the previous layer and to all the neurons
in the following layer.
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Problems in training the
perceptron and a solution
Let's consider a single neuron; what are the best choices for the weight w and the
bias b? Ideally, we would like to provide a set of training examples and let the
computer adjust the weight and the bias in such a way that the errors produced in
the output are minimized. In order to make this a bit more concrete, let's suppose
we have a set of images of cats and another separate set of images not containing
cats. For the sake of simplicity, assume that each neuron looks at a single input
pixel value. While the computer processes these images, we would like our neuron
to adjust its weights and bias so that we have fewer and fewer images wrongly
recognized as non-cats. This approach seems very intuitive, but it requires that a
small change in weights (and/or bias) causes only a small change in outputs.

If we have a big output jump, we cannot progressively learn (rather than trying
things in all possible directions—a process known as exhaustive search—without
knowing if we are improving). After all, kids learn little by little. Unfortunately, the
perceptron does not show this little-by-little behavior. A perceptron is either 0 or 1
and that is a big jump and it will not help it to learn, as shown in the following
graph:

We need something different, smoother. We need a function that progressively
changes from 0 to 1 with no discontinuity. Mathematically, this means that we need
a continuous function that allows us to compute the derivative.
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Activation function —
sigmoid
The sigmoid function is defined as follows:

As represented in the following graph, it has small output changes in (0, 1) when
the input varies in . Mathematically, the function is continuous. A typical
sigmoid function is represented in the following graph:

A neuron can use the sigmoid for computing the nonlinear function .
Note that, if  is very large and positive, then , so , while if 

 is very large and negative  so . In other words, a neuron
with sigmoid activation has a behavior similar to the perceptron, but the changes
are gradual and output values, such as 0.5539 or 0.123191, are perfectly legitimate.
In this sense, a sigmoid neuron can answer maybe.
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Activation function —
ReLU
The sigmoid is not the only kind of smooth activation function used for neural
networks. Recently, a very simple function called rectified linear unit (ReLU)
became very popular because it generates very good experimental results. A ReLU
is simply defined as , and the nonlinear function is represented in the
following graph. As you can see in the following graph, the function is zero for
negative values, and it grows linearly for positive values:
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Activation functions
Sigmoid and ReLU are generally called activation functions in neural network
jargon. In the Testing different optimizers in Keras section, we will see that those
gradual changes, typical of sigmoid and ReLU functions, are the basic building
blocks to developing a learning algorithm which adapts little by little, by
progressively reducing the mistakes made by our nets. An example of using the
activation function σ with the (x1, x2, ..., xm) input vector, (w1, w2, ..., wm) weight
vector, b bias, and Σ summation is given in the following diagram:

Keras supports a number of activation functions, and a full list is available at https://k
eras.io/activations/.
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A real example —
recognizing handwritten
digits
In this section, we will build a network that can recognize handwritten numbers.
For achieving this goal, we use MNIST (for more information, refer to http://yann.lecu
n.com/exdb/mnist/), a database of handwritten digits made up of a training set of
60,000 examples and a test set of 10,000 examples. The training examples are
annotated by humans with the correct answer. For instance, if the handwritten digit
is the number three, then three is simply the label associated with that example.

In machine learning, when a dataset with correct answers is available, we say that
we can perform a form of supervised learning. In this case, we can use training
examples for tuning up our net. Testing examples also have the correct answer
associated with each digit. In this case, however, the idea is to pretend that the label
is unknown, let the network do the prediction, and then later on, reconsider the
label to evaluate how well our neural network has learned to recognize digits. So,
not unsurprisingly, testing examples are just used to test our net.

Each MNIST image is in gray scale, and it consists of 28 x 28 pixels. A subset of
these numbers is represented in the following diagram:
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One-hot encoding — OHE
In many applications, it is convenient to transform categorical (non-numerical)
features into numerical variables. For instance, the categorical feature digit with the
value d in [0-9] can be encoded into a binary vector with 10 positions, which
always has 0 value, except the d-th position where a 1 is present. This type of
representation is called one-hot encoding (OHE) and is very common in data
mining when the learning algorithm is specialized for dealing with numerical
functions.
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Defining a simple neural net
in Keras
Here, we use Keras to define a network that recognizes MNIST handwritten digits.
We start with a very simple neural network and then progressively improve it.

Keras provides suitable libraries to load the dataset and split it into training sets
X_train, used for fine-tuning our net, and tests set X_test, used for assessing the
performance. Data is converted into float32 for supporting GPU computation and
normalized to [0, 1]. In addition, we load the true labels into Y_train and Y_test
respectively and perform a one-hot encoding on them. Let's see the code:

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np_utils
np.random.seed(1671) # for reproducibility

# network and training
NB_EPOCH = 200
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # SGD optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION

# data: shuffled and split between train and test sets
#
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# normalize
#
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)
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The input layer has a neuron associated with each pixel in the image for a total of
28 x 28 = 784 neurons, one for each pixel in the MNIST images.

Typically, the values associated with each pixel are normalized in the range [0, 1]
(which means that the intensity of each pixel is divided by 255, the maximum
intensity value). The output is 10 classes, one for each digit.

The final layer is a single neuron with activation function softmax, which is a
generalization of the sigmoid function. Softmax squashes a k-dimensional vector of
arbitrary real values into a k-dimensional vector of real values in the range (0, 1). In
our case, it aggregates 10 answers provided by the previous layer with 10 neurons:

# 10 outputs
# final stage is softmax
model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,)))
model.add(Activation('softmax'))
model.summary()

Once we define the model, we have to compile it so that it can be executed by the
Keras backend (either Theano or TensorFlow). There are a few choices to be
made during compilation:

We need to select the optimizer that is the specific algorithm used to update
weights while we train our model
We need to select the objective function that is used by the optimizer to
navigate the space of weights (frequently, objective functions are called loss
function, and the process of optimization is defined as a process of loss
minimization)
We need to evaluate the trained model

Some common choices for the objective function (a complete list of Keras
objective functions is at https://keras.io/objectives/) are as follows:

MSE: This is the mean squared error between the predictions and the true
values. Mathematically, if  is a vector of n predictions, and Y is the vector
of n observed values, then they satisfy the following equation:

These objective functions average all the mistakes made for each
prediction, and if the prediction is far from the true value, then
this distance is made more evident by the squaring operation.

Binary cross-entropy: This is the binary logarithmic loss. Suppose that our
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model predicts p while the target is t, then the binary cross-entropy is defined
as follows:

This objective function is suitable for binary labels prediction.

Categorical cross-entropy: This is the multiclass logarithmic loss. If the
target is ti,j and the prediction is pi,j, then the categorical cross-entropy is this:

This objective function is suitable for multiclass labels predictions.
It is also the default choice in association with softmax activation.

Some common choices for metrics (a complete list of Keras metrics is at https://keras.
io/metrics/) are as follows:

Accuracy: This is the proportion of correct predictions with respect to the
targets
Precision: This denotes how many selected items are relevant for a multilabel
classification
Recall: This denotes how many selected items are relevant for a multilabel
classification

Metrics are similar to objective functions, with the only difference that they are not
used for training a model but only for evaluating a model. Compiling a model in
Keras is easy:

model.compile(loss='categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])

Once the model is compiled, it can be then trained with the fit() function, which
specifies a few parameters:

epochs: This is the number of times the model is exposed to the training set. At
each iteration, the optimizer tries to adjust the weights so that the objective
function is minimized.
batch_size: This is the number of training instances observed before the
optimizer performs a weight update.

Training a model in Keras is very simple. Suppose we want to iterate for NB_EPOCH
steps:
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history = model.fit(X_train, Y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

We reserved part of the training set for validation. The key idea is
that we reserve a part of the training data for measuring the
performance on the validation while training. This is a good
practice to follow for any machine learning task, which we will
adopt in all our examples.

Once the model is trained, we can evaluate it on the test set that contains new
unseen examples. In this way, we can get the minimal value reached by
the objective function and best value reached by the evaluation metric.

Note that the training set and the test set are, of course, rigorously separated. There
is no point in evaluating a model on an example that has already been used for
training. Learning is essentially a process intended to generalize unseen
observations and not to memorize what is already known:

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

So, congratulations, you have just defined your first neural network in Keras. A
few lines of code, and your computer is able to recognize handwritten numbers.
Let's run the code and see what the performance is.
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Running a simple Keras net
and establishing a baseline
So let's see what will happen when we run the code in the following screenshot:

First, the net architecture is dumped, and we can see the different types of layers
used, their output shape, how many parameters they need to optimize, and how
they are connected. Then, the network is trained on 48,000 samples, and 12,000
are reserved for validation. Once the neural model is built, it is then tested on
10,000 samples. As you can see, Keras is internally using TensorFlow as a backend
system for computation. For now, we don't go into the internals on how the training
happens, but we can notice that the program runs for 200 iterations, and each time,
the accuracy improves. When the training ends, we test our model on the test set
and achieve about 92.36% accuracy on training, 92.27% on validation, and 92.22%
on the test.

This means that a bit less than one handwritten character out of ten is not correctly
recognized. We can certainly do better than that. In the following screenshot, we
can see the test accuracy:
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Improving the simple net in
Keras with hidden layers
We have a baseline accuracy of 92.36% on training, 92.27% on validation, and
92.22% on the test. This is a good starting point, but we can certainly improve it.
Let's see how.

A first improvement is to add additional layers to our network. So, after the input
layer, we have a first dense layer with the N_HIDDEN neurons and an activation
function relu. This additional layer is considered hidden because it is not directly
connected to either the input or the output. After the first hidden layer, we have a
second hidden layer, again with the N_HIDDEN neurons, followed by an output layer
with 10 neurons, each of which will fire when the relative digit is recognized. The
following code defines this new network:

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np_utils
np.random.seed(1671) # for reproducibility
# network and training
NB_EPOCH = 20
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION
# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# normalize
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)
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# M_HIDDEN hidden layers
# 10 outputs
# final stage is softmax
model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=OPTIMIZER,
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

Let's run the code and see which result we get with this multilayer network. Not
bad. By adding two hidden layers, we reached 94.50% on the training set, 94.63%
on validation, and 94.41% on the test. This means that we gained an additional
2.2% accuracy on the test with respect to the previous network. However, we
dramatically reduced the number of iterations from 200 to 20. That's good, but we
want more.

If you want, you can play by yourself and see what happens if you add only one
hidden layer instead of two, or if you add more than two layers. I leave this
experiment as an exercise. The following screenshot shows the output of the
preceding example:
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Further improving the
simple net in Keras with
dropout
Now our baseline is 94.50% on the training set, 94.63% on validation, and 94.41%
on the test. A second improvement is very simple. We decide to randomly drop
with the dropout probability some of the values propagated inside our internal
dense network of hidden layers. In machine learning, this is a well-known form of
regularization. Surprisingly enough, this idea of randomly dropping a few values
can improve our performance:

from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.utils import np_utils
np.random.seed(1671) # for reproducibility
# network and training
NB_EPOCH = 250
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimizer, explained later in this chapter
N_HIDDEN = 128
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION
DROPOUT = 0.3
# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784
#
X_train = X_train.reshape(60000, RESHAPED)
X_test = X_test.reshape(10000, RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# normalize
X_train /= 255
X_test /= 255
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)
# M_HIDDEN hidden layers 10 outputs
model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
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model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=OPTIMIZER,
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

Let's run the code for 20 iterations as previously done, and we will see that this net
achieves an accuracy of 91.54% on the training, 94.48% on validation, and 94.25%
on the test:
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Note that training accuracy should still be above the test accuracy, otherwise we are
not training long enough. So let's try to increase significantly the number of epochs
up to 250, and we get 98.1% accuracy on training, 97.73% on validation, and
97.7% on the test:
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It is useful to observe how accuracy increases on training and test sets when the
number of epochs increases. As you can see in the following graph, these two
curves touch at about 250 epochs, and therefore, there is no need to train further
after that point:

Note that it has been frequently observed that networks with random dropout in
internal hidden layers can generalize better on unseen examples contained in test
sets. Intuitively, one can think of this as each neuron becoming more capable
because it knows it cannot depend on its neighbors. During testing, there is no
dropout, so we are now using all our highly tuned neurons. In short, it is generally a
good approach to test how a net performs when some dropout function is adopted.
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Testing different optimizers
in Keras
We have defined and used a network; it is useful to start giving an intuition about
how networks are trained. Let's focus on one popular training technique known as
gradient descent (GD). Imagine a generic cost function C(w) in one single variable
w like in the following graph:

The gradient descent can be seen as a hiker who aims at climbing down a mountain
into a valley. The mountain represents the function C, while the valley represents
the minimum Cmin. The hiker has a starting point w0. The hiker moves little by
little. At each step r, the gradient is the direction of maximum increase.

Mathematically, this direction is the value of the partial derivative  evaluated at

point wr reached at step r. Therefore by taking the opposite direction, , the
hiker can move towards the valley. At each step, the hiker can decide what the leg
length is before the next step. This is the learning rate  in gradient descent
jargon. Note that if  is too small, then the hiker will move slowly. However, if  is
too high, then the hiker will possibly miss the valley.

Now you should remember that a sigmoid is a continuous function, and it is
possible to compute the derivative. It can be proven that the sigmoid is shown as
follows:
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It has the following derivative:

  

ReLU is not differentiable in 0. We can, however, extend the first derivative in 0 to
a function over the whole domain by choosing it to be either 0 or 1. The point-wise
derivative of ReLU  is as follows:

Once we have the derivative, it is possible to optimize the nets with a gradient
descent technique. Keras uses its backend (either TensorFlow or Theano) for
computing the derivative on our behalf so we don't need to worry about
implementing or computing it. We just choose the activation function, and Keras
computes its derivative on our behalf.

A neural network is essentially a composition of multiple functions with thousands,
and sometimes millions, of parameters. Each network layer computes a function
whose error should be minimized in order to improve the accuracy observed during
the learning phase. When we discuss backpropagation, we will discover that the
minimization game is a bit more complex than our toy example. However, it is still
based on the same intuition of descending a valley.

Keras implements a fast variant of gradient descent known as stochastic gradient
descent (SGD) and two more advanced optimization techniques known as
RMSprop and Adam. RMSprop and Adam include the concept of momentum (a
velocity component) in addition to the acceleration component that SGD has. This
allows faster convergence at the cost of more computation. A full list of Keras-
supported optimizers is at https://keras.io/optimizers/. SGD was our default choice so
far. So now let's try the other two. It is very simple, we just need to change few
lines:

from keras.optimizers import RMSprop, Adam
...
OPTIMIZER = RMSprop() # optimizer,

That's it. Let's test it as shown in the following screenshot:

55

https://keras.io/optimizers/


As you can see in the preceding screenshot, RMSprop is faster than SDG since we
are able to achieve an accuracy of 97.97% on training, 97.59% on validation, and
97.84% on the test improving SDG with only 20 iterations. For the sake of
completeness, let's see how the accuracy and loss change with the number of
epochs, as shown in the following graphs:
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OK, let's try the other optimizer, Adam(). It is pretty simple, as follows:

OPTIMIZER = Adam() # optimizer

As we have seen, Adam is slightly better. With Adam, we achieve 98.28% accuracy
on training, 98.03% on validation, and 97.93% on the test with 20 iterations, as
shown in the following graphs:

This is our fifth variant, and remember that our initial baseline was at 92.36%.

So far, we made progressive improvements; however, the gains are now more and
more difficult. Note that we are optimizing with a dropout of 30%. For the sake of
completeness, it could be useful to report the accuracy on the test only for other
dropout values with Adam() chosen as optimizer, as shown in the following graph:
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Increasing the number of
epochs
Let's make another attempt and increase the number of epochs used for training
from 20 to 200. Unfortunately, this choice increases our computation time by 10,
but it gives us no gain. The experiment is unsuccessful, but we have learned that if
we spend more time learning, we will not necessarily improve. Learning is more
about adopting smart techniques and not necessarily about the time spent in
computations. Let's keep track of our sixth variant in the following graph:
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Controlling the optimizer
learning rate
There is another attempt we can make, which is changing the learning parameter
for our optimizer. As you can see in the following graph, the optimal value is
somewhere close to 0.001, which is the default learning rate for the optimer. Good!
Adam works well out of the box:
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Increasing the number of
internal hidden neurons
We can make yet another attempt, that is, changing the number of internal hidden
neurons. We report the results of the experiments with an increasing number of
hidden neurons. We can see in the following graph that by increasing the
complexity of the model, the run time increases significantly because there are
more and more parameters to optimize. However, the gains that we are getting by
increasing the size of the network decrease more and more as the network grows:

In the following graph, we show the time needed for each iteration as the number
of hidden neurons grow:
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The following graph shows the accuracy as the number of hidden neurons grow:
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Increasing the size of batch
computation
Gradient descent tries to minimize the cost function on all the examples provided in
the training sets and, at the same time, for all the features provided in the input.
Stochastic gradient descent is a much less expensive variant, which considers only
BATCH_SIZE examples. So, let's see what the behavior is by changing this parameter.
As you can see, the optimal accuracy value is reached for BATCH_SIZE=128:
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Summarizing the
experiments run for
recognizing handwritten
charts
So, let's summarize: with five different variants, we were able to improve our
performance from 92.36% to 97.93%. First, we defined a simple layer network in
Keras. Then, we improved the performance by adding some hidden layers. After
that, we improved the performance on the test set by adding a few random
dropouts to our network and by experimenting with different types of optimizers.
Current results are summarized in the following table:

Model/Accuracy Training Validation Test

Simple 92.36% 92.37% 92.22%

Two hidden (128) 94.50% 94.63% 94.41%

Dropout (30%) 98.10% 97.73% 97.7% (200 epochs)

RMSprop 97.97% 97.59% 97.84% (20 epochs)

Adam 98.28% 98.03% 97.93% (20 epochs)

However, the next two experiments did not provide significant improvements.
Increasing the number of internal neurons creates more complex models and
requires more expensive computations, but it provides only marginal gains. We get
the same experience if we increase the number of training epochs. A final
experiment consisted in changing the BATCH_SIZE for our optimizer.
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Adopting regularization for
avoiding overfitting
Intuitively, a good machine learning model should achieve low error on training
data. Mathematically, this is equivalent to minimizing the loss function on the
training data given the machine learning model built. This is expressed by the
following formula.:

However, this might not be enough. A model can become excessively complex in
order to capture all the relations inherently expressed by the training data. This
increase of complexity might have two negative consequences. First, a complex
model might require a significant amount of time to be executed. Second, a
complex model can achieve very good performance on training data—because all
the inherent relations in trained data are memorized, but not so good performance
on validation data—as the model is not able to generalize on fresh unseen data.
Again, learning is more about generalization than memorization. The following
graph represents a typical loss function decreasing on both validation and training
sets. However, a certain point the loss on validation starts to increase because of
overfitting:

As a rule of thumb, if during the training we see that the loss increases on
validation, after an initial decrease, then we have a problem of model complexity
that overfits training. Indeed, overfitting is the word used in machine learning for
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concisely describing this phenomenon.

In order to solve the overfitting problem, we need a way to capture the complexity
of a model, that is, how complex a model can be. What could be the solution? Well,
a model is nothing more than a vector of weights. Therefore the complexity of a
model can be conveniently represented as the number of nonzero weights. In other
words, if we have two models, M1 and M2, achieving pretty much the same
performance in terms of loss function, then we should choose the simplest model
that has the minimum number of nonzero weights. We can use a hyperparameter
⅄>=0 for controlling what the importance of having a simple model is, as in this
formula:

There are three different types of regularizations used in machine learning:

L1 regularization (also known as lasso): The complexity of the model is
expressed as the sum of the absolute values of the weights
L2 regularization (also known as ridge): The complexity of the model is
expressed as the sum of the squares of the weights
Elastic net regularization: The complexity of the model is captured by a
combination of the two preceding techniques

Note that the same idea of regularization can be applied independently to the
weights, to the model, and to the activation.

Therefore, playing with regularization can be a good way to increase the
performance of a network, in particular when there is an evident situation of
overfitting. This set of experiments is left as an exercise for the interested reader.

Note that Keras supports both l1, l2, and elastic net regularizations. Adding
regularization is easy; for instance, here we have a l2 regularizer for kernel (the
weight W):

from keras import regularizers model.add(Dense(64, input_dim=64, kernel_regularizer=regularizers.l2(

A full description of the available parameters is available at: https://keras.io/regularizers/.
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Hyperparameters tuning
The preceding experiments gave a sense of what the opportunities for fine-tuning a
net are. However, what is working for this example is not necessarily working for
other examples. For a given net, there are indeed multiple parameters that can be
optimized (such as the number of hidden neurons, BATCH_SIZE, number of epochs, and
many more according to the complexity of the net itself).

Hyperparameter tuning is the process of finding the optimal combination of those
parameters that minimize cost functions. The key idea is that if we have n
parameters, then we can imagine that they define a space with n dimensions, and
the goal is to find the point in this space which corresponds to an optimal value for
the cost function. One way to achieve this goal is to create a grid in this space and
systematically check for each grid vertex what the value assumed by the cost
function is. In other words, the parameters are divided into buckets, and different
combinations of values are checked via a brute force approach.
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Predicting output
When a net is trained, it can be course be used for predictions. In Keras, this is
very simple. We can use the following method:

# calculate predictions
predictions = model.predict(X)

For a given input, several types of output can be computed, including a method:

model.evaluate(): This is used to compute the loss values
model.predict_classes(): This is used to compute category outputs
model.predict_proba(): This is used to compute class probabilities
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A practical overview of
backpropagation
Multilayer perceptrons learn from training data through a process called
backpropagation. The process can be described as a way of progressively
correcting mistakes as soon as they are detected. Let's see how this works.

Remember that each neural network layer has an associated set of weights that
determines the output values for a given set of inputs. In addition to that, remember
that a neural network can have multiple hidden layers.

In the beginning, all the weights have some random assignment. Then the net is
activated for each input in the training set: values are propagated forward from the
input stage through the hidden stages to the output stage where a prediction is made
(note that we have kept the following diagram simple by only representing a few
values with green dotted lines, but in reality, all the values are propagated forward
through the network):

Since we know the true observed value in the training set, it is possible to calculate
the error made in prediction. The key intuition for backtracking is to propagate the
error back and use an appropriate optimizer algorithm, such as a gradient descent,
to adjust the neural network weights with the goal of reducing the error (again for
the sake of simplicity, only a few error values are represented):
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The process of forward propagation from input to output and backward
propagation of errors is repeated several times until the error gets below a
predefined threshold. The whole process is represented in the following diagram:

The features represent the input and the labels are here used to drive the learning
process. The model is updated in such a way that the loss function is progressively
minimized. In a neural network, what really matters is not the output of a single
neuron but the collective weights adjusted in each layer. Therefore, the network
progressively adjusts its internal weights in such a way that the prediction increases
the number of labels correctly forecasted. Of course, using the right set features
and having a quality labeled data is fundamental to minimizing the bias during the
learning process.
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Towards a deep learning
approach
While playing with handwritten digit recognition, we came to the conclusion that
the closer we get to the accuracy of 99%, the more difficult it is to improve. If we
want to have more improvements, we definitely need a new idea. What are we
missing? Think about it.

The fundamental intuition is that, so far, we lost all the information related to the
local spatiality of the images. In particular, this piece of code transforms the bitmap,
representing each written digit into a flat vector where the spatial locality is gone:

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)

However, this is not how our brain works. Remember that our vision is based on
multiple cortex levels, each one recognizing more and more structured information,
still preserving the locality. First we see single pixels, then from that, we recognize
simple geometric forms and then more and more sophisticated elements such as
objects, faces, human bodies, animals and so on.

In Chapter 3, Deep Learning with ConvNets, we will see that a particular type of
deep learning network known as convolutional neural network (CNN) has been
developed by taking into account both the idea of preserving the spatial locality in
images (and, more generally, in any type of information) and the idea of learning
via progressive levels of abstraction: with one layer, you can only learn simple
patterns; with more than one layer, you can learn multiple patterns. Before
discussing CNN, we need to discuss some aspects of Keras architecture and have a
practical introduction to a few additional machine learning concepts. This will be
the topic of the next chapters.
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Summary
In this chapter, you learned the basics of neural networks, more specifically, what a
perceptron is, what a multilayer perceptron is, how to define neural networks in
Keras, how to progressively improve metrics once a good baseline is established,
and how to fine-tune the hyperparameter's space. In addition to that, you now also
have an intuitive idea of what some useful activation functions (sigmoid and ReLU)
are, and how to train a network with backpropagation algorithms based on either
gradient descent, on stochastic gradient descent, or on more sophisticated
approaches, such as Adam and RMSprop.

In the next chapter, we will see how to install Keras on AWS, Microsoft Azure,
Google Cloud, and on your own machine. In addition to that, we will provide an
overview of Keras APIs.
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Keras Installation and API
In the previous chapter, we discussed the basic principles of neural networks and
provided a few examples of nets that are able to recognize MNIST handwritten
numbers.

This chapter explains how to install Keras, Theano, and TensorFlow. Step by step,
we will look at how to get the environment working and move from intuition to
working nets in very little time. Then we will discuss how to install on a dockerized
infrastructure based on containers, and in the cloud with Google GCP, Amazon
AWS, and Microsoft Azure. In addition to that, we will present an overview of
Keras APIs, and some commonly useful operations such as loading and saving
neural networks' architectures and weights, early stopping, history saving,
checkpointing, and interactions with TensorBoard and Quiver. Let us start.

By the end of this chapter, we will have covered the following topics:

Installing and configuring Keras
Keras architecture
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Installing Keras
In the sections to follow, we will show how to install Keras on multiple platforms.
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Step 1 — install some useful
dependencies
First, we install the numpy package, which provides support for large,
multidimensional arrays and matrices as well as high-level mathematical functions.
Then we install scipy, a library used for scientific computation. After that, it might
be appropriate to install scikit-learn, a package considered the Python Swiss army
knife for machine learning. In this case, we will use it for data exploration.
Optionally, it could be useful to install pillow, a library useful for image processing,
and h5py, a library useful for data serialization used by Keras for model saving. A
single command line is enough for installing what is needed. Alternatively, one can
install Anaconda Python, which will automatically install numpy, scipy, scikit-learn,
h5py, pillow, and a lot of other libraries that are needed for scientific computing (for
more information, refer to: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, by S. Ioffe and C. Szegedy, arXiv.or
g/abs/1502.03167, 2015). You can find the packages available in Anaconda Python at h
ttps://docs.continuum.io/anaconda/pkg-docs. The following screenshot shows how to install
the packages for our work:
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Step 2 — install Theano
We can use pip to install Theano, as shown in the following screenshot:
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Step 3 — install TensorFlow
Now we can install TensorFlow using the instructions found on the TensorFlow
website at https://www.tensorflow.org/versions/r0.11/get_started/os_setup.html#pip-installation.
Again, we simply use pip for installing the correct package, as shown in the
following screenshot. For instance, if we need to use GPUs, it is important to pick
the appropriate package:
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Step 4 — install Keras
Now we can simply install Keras and start testing the installed environment. Pretty
simple; let's use pip again, as shown in this screenshot:
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Step 5 — testing Theano,
TensorFlow, and Keras
Now let's test the environment. First let's look at how to define the sigmoid
function in Theano. As you see, it is very simple; we just write the mathematical
formula and compute the function element-wise on a matrix. Just run the Python
Shell and write the code as shown in the following screenshot to get the result:

So, Theano works. Let's test TensorFlow by simply importing the MNIST dataset
as shown in the following screenshot. We have already seen, in Chapter 1, Neural
Networks Foundations, a few working examples of the Keras network:
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Configuring Keras
Keras has a very minimalist configuration file. Let's load it with a vi session. The
parameters are very simple:

Parameters Values

image_dim_ordering
Can be either tf for the TensorFlow image ordering
or th for Theano image ordering

epsilon The epsilon value used during computation

floatx Can be either float32 or float64

backend Can be either tensorflow or theano

The image_dim_ordering of th value gives you a somewhat non-intuitive dimension
ordering for images (depth, width, and height), instead of (width, height, and
depth), for tf. The following are the default parameters in my machine:

If you install a GPU-enabled TensorFlow version, then Keras will
automatically use your configured GPU when TensorFlow is
selected as the backend.
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Installing Keras on Docker
One of the easiest ways to get started with TensorFlow and Keras is running in a
Docker container. A convenient solution is to use a predefined Docker image for
deep learning created by the community that contains all the popular DL
frameworks (TensorFlow, Theano, Torch, Caffe, and so on). Refer to the GitHub
repository at https://github.com/saiprashanths/dl-docker for the code files. Assuming that
you already have Docker up and running (for more information, refer to https://www.
docker.com/products/overview), installing it is pretty simple and is shown as follows:

The following screenshot, says something like, after getting the image from Git, we
build the Docker image:
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In this screenshot, we see how to run it:

From within the container, it is possible to activate support for Jupyter Notebooks
(for more information, refer to http://jupyter.org/):

Access it directly from the host machine on port:

It is also possible to access TensorBoard (for more information, refer to https://www.t
ensorflow.org/how_tos/summaries_and_tensorboard/) with the help of the command in the
screenshot that follows, which is discussed in the next section:
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After running the preceding command, you will be redirected to the following page:
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Installing Keras on Google
Cloud ML
Installing Keras on Google Cloud is very simple. First, we can install Google
Cloud (for the downloadable file, refer to https://cloud.google.com/sdk/), a command-line
interface for Google Cloud Platform; then we can use CloudML, a managed
service that enables us to easily build machine, learning models with TensorFlow.
Before using Keras, let's use Google Cloud with TensorFlow to train an MNIST
example available on GitHub. The code is local and training happens in the cloud:

In the following screenshot, you can see how to run a training session:
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We can use TensorBoard to show how cross-entropy decreases across iterations:

In the next screenshot, we see the graph of cross-entropy:

Now, if we want to use Keras on the top of TensorFlow, we simply download the
Keras source from PyPI (for the downloadable file, refer to https://pypi.Python.org/pypi/
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Keras/1.2.0 or later versions) and then directly use Keras as a CloudML package
solution, as in the following example:

Here, trainer.task2.py is an example script:

from keras.applications.vgg16 import VGG16
from keras.models import Model
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np

# pre-built and pre-trained deep learning VGG16 model
base_model = VGG16(weights='imagenet', include_top=True)
for i, layer in enumerate(base_model.layers):
  print (i, layer.name, layer.output_shape)
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Installing Keras on Amazon
AWS
Installing TensorFlow and Keras on Amazon is very simple. Indeed, it is possible to
use a prebuilt AMI named TFAMI.v3 that is open and free (for more information,
refer to https://github.com/ritchieng/tensorflow-aws-ami), shown as follows:

This AMI runs TensorFlow in less than five minutes and supports TensorFlow,
Keras, OpenAI Gym, and all dependencies. As of January 2017, it supports the
following:

TensorFlow 0.12
Keras 1.1.0
TensorLayer 1.2.7
CUDA 8.0
CuDNN 5.1
Python 2.7
Ubuntu 16.04

In addition, TFAMI.v3 works on P2 computing instances (for more information, refer
to https://aws.amazon.com/ec2/instance-types/#p2), as shown in the following screenshot:
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Some features of P2 instances are as follows:

Intel Xeon E5-2686v4 (Broadwell) processors
NVIDIA K80 GPUs, each with 2,496 parallel cores and 12 GB of GPU
memory
Supports peer-to-peer GPU communication
Provides enhanced networking (for more information, refer to https://aws.amazo
n.com/ec2/faqs/#What_networking_capabilities_are_included_in_this_feature) with 20
Gbps of aggregate network bandwidth

The TFAMI.v3 also works on G2 computing instances (for more information, refer to 
https://aws.amazon.com/ec2/instance-types/#g2). Some features of G2 instances are as
follows:

Intel Xeon E5-2670 (Sandy Bridge) processors
NVIDIA GPUs, each with 1,536 CUDA cores and 4 GB of video memory
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Installing Keras on
Microsoft Azure
One way to install Keras on Azure is to install the support for Docker and then get
a containerized version of TensorFlow plus Keras. Online, it is also possible to find
a detailed set of instructions on how to install Keras and TensorFlow with Docker,
but this is essentially what we have seen already in a previous section (for more
information, refer to https://blogs.msdn.microsoft.com/uk_faculty_connection/2016/09/26/tensorfl
ow-on-docker-with-microsoft-azure/).

If you use Theano as the only backend, then Keras can run with just a click by
loading a pre-built package available on Cortana Intelligence Gallery (for more
information, refer to https://gallery.cortanaintelligence.com/Experiment/Theano-Keras-1).
The following sample shows how to import Theano and Keras into Azure ML
directly as a ZIP file and use them in the Execute Python Script module. This
example is due to Hai Ning (for more information, refer to https://goo.gl/VLR25o), and
it essentially runs the Keras code within the azureml_main() method:

# The script MUST contain a function named azureml_main
# which is the entry point for this module.

# imports up here can be used to
import pandas as pd
import theano
import theano.tensor as T
from theano import function
from keras.models import Sequential
from keras.layers import Dense, Activation
import numpy as np
# The entry point function can contain up to two input arguments:
#   Param<dataframe1>: a pandas.DataFrame
#   Param<dataframe2>: a pandas.DataFrame
def azureml_main(dataframe1 = None, dataframe2 = None):
    # Execution logic goes here
    # print('Input pandas.DataFrame #1:rnrn{0}'.format(dataframe1))

    # If a zip file is connected to the third input port is connected,
    # it is unzipped under ".Script Bundle". This directory is added
    # to sys.path. Therefore, if your zip file contains a Python file
    # mymodule.py you can import it using:
    # import mymodule
    model = Sequential()
    model.add(Dense(1, input_dim=784, activation="relu"))
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
    data = np.random.random((1000,784))
    labels = np.random.randint(2, size=(1000,1))
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    model.fit(data, labels, nb_epoch=10, batch_size=32)
    model.evaluate(data, labels)

    return dataframe1,

In this screenshot, you see an example use of Microsoft Azure ML to run Theano
and Keras:
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Keras API
Keras has a modular, minimalist, and easy extendable architecture. Francois
Chollet, the author of Keras, says:

The library was developed with a focus on enabling fast experimentation. Being
able to go from idea to result with the least possible delay is key to doing good
research.

Keras defines high-level neural networks running on top of either TensorFlow (for
more information, refer to https://github.com/tensorflow/tensorflow) or Theano (for more
information, refer to https://github.com/Theano/Theano). In details:

Modularity: A model is either a sequence or a graph of standalone modules
that can be combined together like LEGO blocks for building neural
networks. Namely, the library predefines a very large number of modules
implementing different types of neural layers, cost functions, optimizers,
initialization schemes, activation functions, and regularization schemes.
Minimalism: The library is implemented in Python and each module is kept
short and self-describing.
Easy extensibility: The library can be extended with new functionalities, as
we will describe in Chapter 7, Additional Deep Learning Models.
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Getting started with Keras
architecture
In this section, we review the most important Keras components used for defining
neural networks. First, we define what a tensor is, then we discuss different ways
of composing predefined modules, and we conclude with an overview of the ones
most commonly used.
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What is a tensor?
Keras uses either Theano or TensorFlow to perform very efficient computations on
tensors. But what is a tensor anyway? A tensor is nothing but a multidimensional
array or matrix. Both the backends are capable of efficient symbolic computations
on tensors, which are the fundamental building blocks for creating neural networks.
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Composing models in Keras
There are two ways of composing models in Keras. They are as follows:

Sequential composition
Functional composition

Let us take a look at each one in detail.
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Sequential composition
The first one is the sequential composition, where different predefined models are
stacked together in a linear pipeline of layers similar to a stack or a queue. In Chapte
r 1, Neural Networks Foundations, we saw a few examples of sequential pipelines.
For instance:

model = Sequential()
model.add(Dense(N_HIDDEN, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.summary()
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Functional composition
The second way of composing modules is via the functional API, where it is
possible to define complex models, such as directed acyclic graphs, models with
shared layers, or multi-output models. We will see such examples in Chapter 7,
Additional Deep Learning Models.
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An overview of predefined
neural network layers
Keras has a number of prebuilt layers. Let us review the most commonly used ones
and highlight in which chapter these layers are mostly used.
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Regular dense
A dense model is a fully connected neural network layer. We have already seen
examples of usage in Chapter 1, Neural Networks Foundations. Here is the
prototype with a definition of the parameters:

keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform'
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Recurrent neural networks
— simple, LSTM, and GRU
Recurrent neural networks are a class of neural networks that exploit the sequential
nature of their input. Such inputs could be a text, a speech, time series, and
anything else where the occurrence of an element in the sequence is dependent on
the elements that appeared before it. We will discuss simple, LSTM, and GRU
recurrent neural networks in Chapter 6, Recurrent Neural Network — RNN. Here
you can see some prototypes with a definition of the parameters:

keras.layers.recurrent.Recurrent(return_sequences=False, go_backwards=False, stateful=

keras.layers.recurrent.SimpleRNN(units, activation='tanh', use_bias=True, kernel_initializer=

keras.layers.recurrent.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid'

keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid'
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Convolutional and pooling
layers
ConvNets are a class of neural networks using convolutional and pooling operations
for progressively learning rather sophisticated models based on progressive levels of
abstraction. This learning via progressive abstraction resembles vision models that
have evolved over millions of years inside the human brain. People called it deep
with 3-5 layers a few years ago, and now it has gone up to 100-200. We will
discuss convolutional neural networks in Chapter 3, Deep Learning with ConvNets.
Here are some prototypes with a definition of the parameters:

keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=

keras.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid'

keras.layers.pooling.MaxPooling1D(pool_size=2, strides=None, padding='valid')

keras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=
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Regularization
Regularization is a way to prevent overfitting. We have already seen examples of
usage in Chapter 1, Neural Networks Foundations. Multiple layers have parameters
for regularization.  The following is the list of regularization parameters commonly
used for dense, and convolutional modules:

kernel_regularizer: Regularizer function applied to the weight matrix
bias_regularizer: Regularizer function applied to the bias vector
activity_regularizer: Regularizer function applied to the output of the layer (its
activation)

In addition is possible to use Dropout for regularization and that is frequently a very
effective choice

keras.layers.core.Dropout(rate, noise_shape=None, seed=None)

Where:

rate: It is a float between 0 and 1 which represents the fraction of the input
units to drop
noise_shape: It is a 1D integer tensor which represents the shape of the binary
dropout mask that will be multiplied with the input
seed: It is a integer which is used use as random seed
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Batch normalization
Batch normalization (for more information, refer to https://www.colwiz.com/cite-in-google
-docs/cid=f20f9683aaf69ce) is a way to accelerate learning and generally achieve better
accuracy. We will look at examples of usage in Chapter 4, Generative Adversarial
Networks and WaveNet, when we discuss GANs. Here is the prototype with a
definition of the parameters:

keras.layers.normalization.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001
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An overview of predefined
activation functions
Activation includes commonly used functions such as sigmoid, linear, hyperbolic
tangent, and ReLU. We have seen a few examples of activation functions in Chapter 
1, Neural Networks Foundations, and more examples will be presented in the next
chapters. The following diagrams are examples of sigmoid, linear, hyperbolic
tangent, and ReLU activation functions:

Sigmoid Linear

Hyperbolic tangent ReLU
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An overview of losses
functions
Losses functions (or objective functions, or optimization score function; for more
information, refer to https://keras.io/losses/) can be classified into four categories:

Accuracy which is used for classification problems. There are multiple
choices: binary_accuracy (mean accuracy rate across all predictions for binary
classification problems), categorical_accuracy (mean accuracy rate across all
predictions for multiclass classification problems), sparse_categorical_accuracy
(useful for sparse targets), and top_k_categorical_accuracy (success when the
target class is within the top_k predictions provided).
Error loss, which measures the difference between the values predicted and
the values actually observed. There are multiple choices: mse (mean square
error between predicted and target values), rmse (root square error between
predicted and target values), mae (mean absolute error between predicted and
target values), mape (mean percentage error between predicted and target
values), and msle (mean squared logarithmic error between predicted and
target values).
Hinge loss, which is generally used for training classifiers. There are two
versions: hinge defined as  and squared hinge defined as
the the squared value of the hinge loss.
Class loss is used to calculate the cross-entropy for classification problems.
There are multiple versions, including binary cross-entropy (for more
information, refer to https://en.wikipedia.org/wiki/Cross_entropy), and categorical
cross-entropy.

We have seen a few examples of objective functions in Chapter 1, Neural Networks
Foundations, and more examples will be presented in the next chapters.
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An overview of metrics
A metric function (for more information, refer to https://keras.io/metrics/) is similar to
an objective function. The only difference is that the results from evaluating a
metric are not used when training the model. We have seen a few examples of
metrics in Chapter 1, Neural Networks Foundations, and more examples will be
presented in the next chapters.
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An overview of optimizers
Optimizers include SGD, RMSprop, and Adam. We have seen a few examples of
optimizers in Chapter 1, Neural Networks Foundations, and more examples
(Adagrad and Adadelta; for more information, refer to https://keras.io/optimizers/) will
be presented in the next chapters.
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Some useful operations
Here we report some utility operations that can be carried out with Keras APIs.
The goal is to facilitate the creation of networks, the training process, and the
saving of intermediate results.
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Saving and loading the
weights and the
architecture of a model
Model architectures can be easily saved and loaded as follows:

# save as JSON json_string = model.to_json()
# save as YAML yaml_string = model.to_yaml() 
# model reconstruction from JSON: from keras.models import model_from_json model = model_from_json(json_string) # model reconstruction from YAML model = model_from_yaml(yaml_string)

Model parameters (weights) can be easily saved and loaded as follows:

from keras.models import load_model model.save('my_model.h5')
# creates a HDF5 file 'my_model.h5' del model
# deletes the existing model
# returns a compiled model
# identical to the previous one model = load_model('my_model.h5')
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Callbacks for customizing
the training process
The training process can be stopped when a metric has stopped improving by using
an appropriate callback:

keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0,  
patience=0, verbose=0, mode='auto')

Loss history can be saved by defining a callback like the following:

class LossHistory(keras.callbacks.Callback):     def on_train_begin(self, logs={}):         self.losses = []     def on_batch_end(self, batch, logs={}):         self.losses.append(logs.get('loss')) model = Sequential() model.add(Dense(10, input_dim=784, init='uniform')) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') history = LossHistory() model.fit(X_train,Y_train, batch_size=128, nb_epoch=20,  
verbose=0, callbacks=[history]) print history.losses
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Checkpointing
Checkpointing is a process that saves a snapshot of the application's state at regular
intervals, so the application can be restarted from the last saved state in case of
failure. This is useful during training of deep learning models, which can often be a
time-consuming task. The state of a deep learning model at any point in time is the
weights of the model at that time. Keras saves these weights in HDF5 format (for
more information, refer to https://www.hdfgroup.org/) and provides checkpointing using
its callback API.

Some scenarios where checkpointing can be useful include the following:

If you want the ability to restart from your last checkpoint after your AWS
Spot instance (for more information, refer to http://docs.aws.amazon.com/AWSEC2/l
atest/UserGuide/how-spot-instances-work.html) or Google preemptible virtual
machine (for more information, refer to https://cloud.google.com/compute/docs/instanc
es/preemptible) is unexpectedly terminated
If you want to stop training, perhaps to test your model on test data, then
continue training from the last checkpoint
If you want to retain the best version (by some metric such as validation loss)
as it trains over multiple epochs

The first and second scenarios can be handled by saving a checkpoint after each
epoch, which is handled by the default usage of the ModelCheckpoint callback. The
following code illustrates how to add checkpointing during training of your deep
learning model in Keras:

from __future__ import division, print_function 
from keras.callbacks import ModelCheckpoint 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers.core import Dense, Dropout 
from keras.utils import np_utils 
import numpy as np 
import os 

BATCH_SIZE = 128 
NUM_EPOCHS = 20 
MODEL_DIR = "/tmp" 

(Xtrain, ytrain), (Xtest, ytest) = mnist.load_data() 
Xtrain = Xtrain.reshape(60000, 784).astype("float32") / 255 
Xtest = Xtest.reshape(10000, 784).astype("float32") / 255 
Ytrain = np_utils.to_categorical(ytrain, 10) 
Ytest = np_utils.to_categorical(ytest, 10) 
print(Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape) 
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model = Sequential() 
model.add(Dense(512, input_shape=(784,), activation="relu")) 
model.add(Dropout(0.2)) 
model.add(Dense(512, activation="relu")) 
model.add(Dropout(0.2)) 
model.add(Dense(10, activation="softmax")) 

model.compile(optimizer="rmsprop", loss="categorical_crossentropy", 
              metrics=["accuracy"]) 

# save best model 
checkpoint = ModelCheckpoint( 
    filepath=os.path.join(MODEL_DIR, "model-{epoch:02d}.h5")) 
model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE, nb_epoch=NUM_EPOCHS, 
          validation_split=0.1, callbacks=[checkpoint])

The third scenario involves monitoring a metric, such as validation accuracy or
loss, and only saving a checkpoint if the current metric is better than the previously
saved checkpoint. Keras provides an additional parameter, save_best_only, which
needs to be set to true when instantiating the checkpoint object in order to support
this functionality.
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Using TensorBoard and
Keras
Keras provides a callback for saving your training and test metrics, as well as
activation histograms for the different layers in your model:

keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0,  
write_graph=True, write_images=False)

Saved data can then be visualized with TensorBoad launched at the command line:

tensorboard --logdir=/full_path_to_your_logs
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Using Quiver and Keras
In Chapter 3, Deep Learning with ConvNets, we will discuss ConvNets, which are
an advanced deep learning technique for dealing with images. Here we give a
preview of Quiver (for more information, refer to https://github.com/jakebian/quiver), a
tool useful for visualizing ConvNets features in an interactive way. The installation
is pretty simple, and after that Quiver can be used with one single line:

pip install quiver_engine 

from quiver_engine import server     server.launch(model)

This will launch the visualization at localhost:5000. Quiver allows you to visually
inspect a neural network, as in the following example:
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Summary
In this chapter, we discussed how to install Theano, TensorFlow, and Keras on the
following:

Your local machine
A dockerized infrastructure based on containers
In the cloud with Google GCP, Amazon AWS, and Microsoft Azure

In addition to that, we looked at a few modules defining Keras APIs and some
commonly useful operations such as loading and saving neural networks'
architectures and weights, early stopping, history saving, checkpointing, interactions
with TensorBoard, and interactions with Quiver.

In the next chapter, we will introduce the concept of convolutional networks a
fundamental innovation in deep learning which has been used with success in
multiple domains from text, to video, to speech going well beyond the initial image
processing domain where they were originally conceived.

114



Deep Learning with
ConvNets
In previous chapters, we discussed dense nets, in which each layer is fully
connected to the adjacent layers. We applied those dense networks to classify the
MNIST handwritten characters dataset. In that context, each pixel in the input
image is assigned to a neuron for a total of 784 (28 x 28 pixels) input neurons.
However, this strategy does not leverage the spatial structure and relations of each
image. In particular, this piece of code transforms the bitmap representing each
written digit into a flat vector, where the spatial locality is gone:

#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
o

Convolutional neural networks (also called ConvNet) leverage spatial information
and are therefore very well suited for classifying images. These nets use an ad hoc
architecture inspired by biological data taken from physiological experiments done
on the visual cortex. As discussed, our vision is based on multiple cortex levels,
each one recognizing more and more structured information. First, we see single
pixels; then from them, we recognize simple geometric forms. And then... more
and more sophisticated elements such as objects, faces, human bodies, animals,
and so on.

Convolutional neural networks are indeed fascinating. Over a short period of time,
they become a disruptive technology, breaking all the state-of-the-art results in
multiple domains, from text, to video, to speech going well beyond the initial image
processing domain where they were originally conceived.

In this chapter, we will cover the following topics:

Deep convolutional neural networks
Image classification
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Deep convolutional neural
network — DCNN
A deep convolutional neural network (DCNN) consists of many neural network
layers. Two different types of layers, convolutional and pooling, are typically
alternated. The depth of each filter increases from left to right in the network. The
last stage is typically made of one or more fully connected layers:

There are three key intuitions beyond ConvNets:

Local receptive fields
Shared weights
Pooling

Let's review them.
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Local receptive fields
If we want to preserve spatial information, then it is convenient to represent each
image with a matrix of pixels. Then, a simple way to encode the local structure is to
connect a submatrix of adjacent input neurons into one single hidden neuron
belonging to the next layer. That single hidden neuron represents one local receptive
field. Note that this operation is named convolution and it gives the name to this
type of network.

Of course, we can encode more information by having overlapping submatrices.
For instance, let's suppose that the size of each single submatrix is 5 x 5 and that
those submatrices are used with MNIST images of 28 x 28 pixels. Then we will be
able to generate 23 x 23 local receptive field neurons in the next hidden layer. In
fact it is possible to slide the submatrices by only 23 positions before touching the
borders of the images. In Keras, the size of each single submatrix is called stride
length, and this is a hyperparameter that can be fine-tuned during the construction
of our nets.

Let's define the feature map from one layer to another layer. Of course, we can
have multiple feature maps that learn independently from each hidden layer. For
instance, we can start with 28 x 28 input neurons for processing MINST images
and then recall k feature maps of size 23 x 23 neurons each (again with a stride of 5
x 5) in the next hidden layer.
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Shared weights and bias
Let's suppose that we want to move away from the pixel representation in a row by
gaining the ability to detect the same feature independently from the location where
it is placed in the input image. A simple intuition is to use the same set of weights
and bias for all the neurons in the hidden layers. In this way, each layer will learn a
set of position-independent latent features derived from the image.

Assuming that the input image has shape (256, 256) on three channels with tf
(TensorFlow) ordering, this is represented as (256, 256, 3). Note that with th
(Theano) mode, the channel's dimension (the depth) is at index 1; in tf
(TensoFlow) mode, it is at index 3.

In Keras, if we want to add a convolutional layer with dimensionality of the output
32 and extension of each filter 3 x 3, we will write:

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(256, 256, 3))

Alternatively, we will write:

model = Sequential()
model.add(Conv2D(32, kernel_size=3, input_shape=(256, 256, 3))

This means that we are applying a 3 x 3 convolution on a 256 x 256 image with
three input channels (or input filters), resulting in 32 output channels (or output
filters).

An example of convolution is provided in the following diagram:
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Pooling layers
Let's suppose that we want to summarize the output of a feature map. Again, we
can use the spatial contiguity of the output produced from a single feature map and
aggregate the values of a submatrix into a single output value that synthetically
describes the meaning associated with that physical region.
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Max-pooling
One easy and common choice is max-pooling, which simply outputs the maximum
activation as observed in the region. In Keras, if we want to define a max-pooling
layer of size 2 x 2, we will write:

model.add(MaxPooling2D(pool_size = (2, 2)))

An example of max-pooling is shown in the following diagram:
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Average pooling
Another choice is average pooling, which simply aggregates a region into the
average values of the activations observed in that region.

Note that Keras implements a large number of pooling layers and a complete list is
available at: https://keras.io/layers/pooling/. In short, all pooling operations are nothing
more than a summary operation on a given region.
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ConvNets summary
So far, we have described the basic concepts of ConvNets. CNNs apply
convolution and pooling operations in one dimension for audio and text data along
the time dimension, in two dimensions for images along the (height x width)
dimensions, and in three dimensions for videos along the (height x width x time)
dimensions. For images, sliding the filter over input volume produces a map that
gives the responses of the filter for each spatial position. In other words, a ConvNet
has multiple filters stacked together which learn to recognize specific visual features
independently of the location in the image. Those visual features are simple in the
initial layers of the network, and then more and more sophisticated deeper in the
network.
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An example of DCNN —
LeNet
Yann le Cun proposed (for more information refer to: Convolutional Networks for
Images, Speech, and Time-Series, by Y. LeCun and Y. Bengio, brain theory neural
networks, vol. 3361, 1995) a family of ConvNets named LeNet trained for
recognizing MNIST handwritten characters with robustness to simple geometric
transformations and to distortion. The key intuition here is to have low-layers
alternating convolution operations with max-pooling operations. The convolution
operations are based on carefully chosen local receptive fields with shared weights
for multiple feature maps. Then, higher levels are fully connected layers based on a
traditional MLP with hidden layers and softmax as the output layer.
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LeNet code in Keras
To define LeNet code, we use a convolutional 2D module, which is:

keras.layers.convolutional.Conv2D(filters, kernel_size, padding='valid')

Here, filters is the number of convolution kernels to use (for example, the
dimensionality of the output), kernel_size is an integer or tuple/list of two integers,
specifying the width and height of the 2D convolution window (can be a single
integer to specify the same value for all spatial dimensions), and padding='same'
means that padding is used. There are two options: padding='valid' means that the
convolution is only computed where the input and the filter fully overlap, and
therefore the output is smaller than the input, while padding='same' means that we
have an output that is the same size as the input, for which the area around the
input is padded with zeros.

In addition, we use a MaxPooling2D module:

keras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))

Here, pool_size=(2, 2) is a tuple of two integers representing the factors by which
the image is vertically and horizontally downscaled. So (2, 2) will halve the image
in each dimension, and strides=(2, 2) is the stride used for processing.

Now, let us review the code. First we import a number of modules:

from keras import backend as K
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import SGD, RMSprop, Adam
import numpy as np
import matplotlib.pyplot as plt

Then we define the LeNet network:

#define the ConvNet
class LeNet:
    @staticmethod
    def build(input_shape, classes):
         model = Sequential()
         # CONV => RELU => POOL
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We have a first convolutional stage with ReLU activations followed by a max-
pooling. Our net will learn 20 convolutional filters, each one of which has a size of
5 x 5. The output dimension is the same one of the input shape, so it will be 28 x
28. Note that since the Convolution2D is the first stage of our pipeline, we are also
required to define its input_shape. The max-pooling operation implements a sliding
window that slides over the layer and takes the maximum of each region with a
step of two pixels vertically and horizontally:

model.add(Convolution2D(20, kernel_size=5, padding="same",
input_shape=input_shape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# CONV => RELU => POOL

Then a second convolutional stage with ReLU activations follows, again by a max-
pooling. In this case, we increase the number of convolutional filters learned to 50
from the previous 20. Increasing the number of filters in deeper layers is a common
technique used in deep learning:

model.add(Conv2D(50, kernel_size=5, border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

Then we have a pretty standard flattening and a dense network of 500 neurons,
followed by a softmax classifier with 10 classes:

# Flatten => RELU layers
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))
# a softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))
return model

Congratulations, You have just defined the first deep learning network! Let's see
how it looks visually:
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Now we need some additional code for training the network, but this is very similar
to what we have already described in Chapter 1, Neural Network Foundations. This
time, we also show the code for printing the loss:

# network and training
NB_EPOCH = 20
BATCH_SIZE = 128
VERBOSE = 1
OPTIMIZER = Adam()
VALIDATION_SPLIT=0.2
IMG_ROWS, IMG_COLS = 28, 28 # input image dimensions
NB_CLASSES = 10 # number of outputs = number of digits
INPUT_SHAPE = (1, IMG_ROWS, IMG_COLS)
# data: shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
k.set_image_dim_ordering("th")
# consider them as float and normalize
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# we need a 60K x [1 x 28 x 28] shape as input to the CONVNET
X_train = X_train[:, np.newaxis, :, :]
X_test = X_test[:, np.newaxis, :, :]
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, NB_CLASSES)
y_test = np_utils.to_categorical(y_test, NB_CLASSES)
# initialize the optimizer and model
model = LeNet.build(input_shape=INPUT_SHAPE, classes=NB_CLASSES)
model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZER,
metrics=["accuracy"])
history = model.fit(X_train, y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test, y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
# list all data in history
print(history.history.keys())
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# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Now let's run the code. As you can see, the time had a significant increase and
each iteration in our deep net now takes ~134 seconds against ~1-2 seconds for the
net defined in Chapter 1, Neural Network Foundations. However, the accuracy has
reached a new peak at 99.06%:

Let's plot the model accuracy and the model loss, and we understand that we can
train in only 4 - 5 iterations to achieve a similar accuracy of 99.2%:
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In the following screenshot, we show the final accuracy achieved by our model:

Let's see some of the MNIST images just to understand how good the number
99.2% is! For instance, there are many ways in which humans write a 9, one of
them appearing in the following diagram. The same holds for 3, 7, 4, and 5. The
number 1 in this diagram is so difficult to recognize that probably even a human
will have issues with it:
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We can summarize all the progress made so far with our different models in the
following graph. Our simple net started with an accuracy of 92.22%, which means
that about 8 handwritten characters out of 100 are not correctly recognized. Then,
we gained 7% with the deep learning architecture by reaching an accuracy of
99.20%, which means that about 1 handwritten character out of 100 is incorrectly
recognized:
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Understanding the power of
deep learning
Another test that we can run to better understand the power of deep learning and
ConvNet is to reduce the size of the training set and observe the consequent decay
in performance. One way to do this is to split the training set of 50,000 examples
into two different sets:

The proper training set used for training our model will progressively reduce
its size of (5,900, 3,000, 1,800, 600, and 300) examples
The validation set used to estimate how well our model has been trained will
consist of the remaining examples

Our test set is always fixed and it consists of 10,000 examples.

With this setup, we compare the just-defined deep learning ConvNet against the
first example of neural network defined in Chapter 1, Neural Network Foundations.
As we can see in the following graph, our deep network always outperforms the
simple network and the gap is more and more evident when the number of
examples provided for training is progressively reduced. With 5,900 training
examples the deep learning net had an accuracy of 96.68% against an accuracy of
85.56% of the simple net. More important, with only 300 training examples our
deep learning net still has an accuracy of 72.44% while the simple net shows a
significant decay at 48.26%. All the experiments are run for only four training
iterations. This confirms the breakthrough progress achieved with deep learning. At
first glance this could be surprising from a mathematical point of view because the
deep network has many more unknowns (the weights), so one would think we
need many more data points. However, preserving the spatial information, adding
convolution, pooling, and feature maps is innovation with ConvNets, and this was
optimized on millions of years (since this organization has been inspired by the
visual cortex):
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A list of state-of-the-art results for MNIST is available at: http://rodrigob.github.io/are_we
_there_yet/build/classification_datasets_results.html. As of January, 2017, the best result has
an error rate of 0.21%.
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Recognizing CIFAR-10
images with deep learning
The CIFAR-10 dataset contains 60,000 color images of 32 x 32 pixels in 3 channels
divided into 10 classes. Each class contains 6,000 images. The training set contains
50,000 images, while the test sets provides 10,000 images. This image taken from
the CIFAR repository (https://www.cs.toronto.edu/~kriz/cifar.html) describes a few random
examples from the 10 classes:

The goal is to recognize previously unseen images and assign them to one of the 10
classes. Let us define a suitable deep net.

First of all we import a number of useful modules, define a few constants, and load
the dataset:

from keras.datasets import cifar10
from keras.utils import np_utils
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from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import SGD, Adam, RMSprop
import matplotlib.pyplot as plt

# CIFAR_10 is a set of 60K images 32x32 pixels on 3 channels
IMG_CHANNELS = 3
IMG_ROWS = 32
IMG_COLS = 32

#constant
BATCH_SIZE = 128
NB_EPOCH = 20
NB_CLASSES = 10
VERBOSE = 1
VALIDATION_SPLIT = 0.2
OPTIM = RMSprop()

#load dataset
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

Now let's do a one-hot encoding and normalize the images:

# convert to categorical
Y_train = np_utils.to_categorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# float and normalization
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255

Our net will learn 32 convolutional filters, each of which with a 3 x 3 size. The
output dimension is the same one of the input shape, so it will be 32 x 32 and
activation is ReLU, which is a simple way of introducing non-linearity. After that
we have a max-pooling operation with pool size 2 x 2 and a dropout at 25%:

# network
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

The next stage in the deep pipeline is a dense network with 512 units and ReLU
activation followed by a dropout at 50% and by a softmax layer with 10 classes as
output, one for each category:

model.add(Flatten())
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model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()

After defining the network, we can train the model. In this case, we split the data
and compute a validation set in addition to the training and testing sets. The training
is used to build our models, the validation is used to select the best performing
approach, while the test set is to check the performance of our best models on
fresh unseen data:

# train
model.compile(loss='categorical_crossentropy', optimizer=OPTIM,
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=BATCH_SIZE,
epochs=NB_EPOCH, validation_split=VALIDATION_SPLIT,
verbose=VERBOSE)
score = model.evaluate(X_test, Y_test,
batch_size=BATCH_SIZE, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

In this case we save the architecture of our deep network:

#save model
model_json = model.to_json()
open('cifar10_architecture.json', 'w').write(model_json)
And the weights learned by our deep network on the training set
model.save_weights('cifar10_weights.h5', overwrite=True)

Let us run the code. Our network reaches a test accuracy of 66.4% with 20
iterations. We also print the accuracy and loss plot, and dump the network with
model.summary():
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In the following graph, we report the accuracy and the lost achieved by our net on
both train and test datasets:
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Improving the CIFAR-10
performance with deeper a
network
One way to improve the performance is to define a deeper network with multiple
convolutional operations. In this example, we have a sequence of modules:

conv+conv+maxpool+dropout+conv+conv+maxpool

Followed by a standard dense+dropout+dense. All the activation functions are
ReLU.

Let us see the code for the new network:

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))

Congratulations! You have defined a deeper network. Let us run the code! First we
dump the network, then we run for 40 iterations reaching an accuracy of 76.9%:
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In the following screenshot, we will see the accuracy reached after 40 iterations:

So we have an improvement of 10.5% with respect to the previous simpler deeper
network. For the sake of completeness, let us also report the accuracy and loss
during training, shown as follows:
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Improving the CIFAR-10
performance with data
augmentation
Another way to improve the performance is to generate more images for our
training. The key intuition is that we can take the standard CIFAR training set and
augment this set with multiple types of transformations including rotation, rescaling,
horizontal/vertical flip, zooming, channel shift, and many more. Let us see the
code:

from keras.preprocessing.image import ImageDataGenerator
from keras.datasets import cifar10
import numpy as np
NUM_TO_AUGMENT=5

#load dataset
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

# augumenting
print("Augmenting training set images...")
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')

The rotation_range is a value in degrees (0 - 180) for randomly rotating
pictures. width_shift and height_shift are ranges for randomly translating pictures
vertically or horizontally. zoom_range is for randomly zooming
pictures. horizontal_flip is for randomly flipping half of the images
horizontally. fill_mode is the strategy used for filling in new pixels that can appear
after a rotation or a shift:

xtas, ytas = [], []
for i in range(X_train.shape[0]):
num_aug = 0
x = X_train[i] # (3, 32, 32)
x = x.reshape((1,) + x.shape) # (1, 3, 32, 32)
for x_aug in datagen.flow(x, batch_size=1,
save_to_dir='preview', save_prefix='cifar', save_format='jpeg'):
if num_aug >= NUM_TO_AUGMENT:
break
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xtas.append(x_aug[0])
num_aug += 1

After augmentation, we will have generated many more training images starting
from the standard CIFAR-10 set:

Now we can apply this intuition directly for training. Using the same ConvNet
defined previously we simply generate more augmented images and then we train.
For efficiency, the generator runs in parallel to the model. This allows an image
augmentation on the CPU and in parallel to training on the GPU. Here is the code:

#fit the dataget
datagen.fit(X_train)

# train
history = model.fit_generator(datagen.flow(X_train, Y_train,
batch_size=BATCH_SIZE), samples_per_epoch=X_train.shape[0],
epochs=NB_EPOCH, verbose=VERBOSE)
score = model.evaluate(X_test, Y_test,
batch_size=BATCH_SIZE, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

Each iteration is now more expensive because we have more training data. So let us
run for 50 iterations only and see that we reach an accuracy of 78.3%:
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The results obtained during our experiments are summarized in the following graph:

A list of state-of-the-art results for CIFAR-10 is available at: http://rodrigob.github.io/are_
we_there_yet/build/classification_datasets_results.html. As of January, 2017, the best result
has an accuracy of 96.53%.
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Predicting with CIFAR-10
Now let us suppose that we want to use the deep learning model we just trained for
CIFAR-10 for a bulk evaluation of images. Since we saved the model and the
weights, we do not need to train every time:

import numpy as np
import scipy.misc
from keras.models import model_from_json
from keras.optimizers import SGD

#load model
model_architecture = 'cifar10_architecture.json'
model_weights = 'cifar10_weights.h5'
model = model_from_json(open(model_architecture).read())
model.load_weights(model_weights)

#load images
img_names = ['cat-standing.jpg', 'dog.jpg']
imgs = [np.transpose(scipy.misc.imresize(scipy.misc.imread(img_name), (32, 32)),
(1, 0, 2)).astype('float32')
for img_name in img_names]
imgs = np.array(imgs) / 255

# train
optim = SGD()
model.compile(loss='categorical_crossentropy', optimizer=optim,
metrics=['accuracy'])

# predict
predictions = model.predict_classes(imgs)
print(predictions)

Now let us get the prediction for a  and for a .

We get categories 3 (cat) and 5 (dog) as output, as expected:
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Very deep convolutional
networks for large-scale
image recognition
In 2014, an interesting contribution for image recognition was presented (for more
information refer to: Very Deep Convolutional Networks for Large-Scale Image
Recognition, by K. Simonyan and A. Zisserman, 2014). The paper shows that, a
significant improvement on the prior-art configurations can be achieved by
pushing the depth to 16-19 weight layers. One model in the paper denoted as D or
VGG-16 has 16 deep layers. An implementation in Java Caffe (http://caffe.berkeleyvisio
n.org/) has been used for training the model on the ImageNet ILSVRC-2012 (http://im
age-net.org/challenges/LSVRC/2012/) dataset, which includes images of 1,000 classes and
is split into three sets: training (1.3 million images), validation (50,000 images), and
testing (100,000 images). Each image is (224 x 224) on three channels. The model
achieves 7.5% top 5 error on ILSVRC-2012-val and 7.4% top 5 error on ILSVRC-
2012-test.

According to the ImageNet site:

The goal of this competition is to estimate the content of photographs for the
purpose of retrieval and automatic annotation using a subset of the large hand-
labeled ImageNet dataset (10 million labeled images depicting 10,000 + object
categories) as training. Test images will be presented with no initial annotation—no
segmentation or labels—and algorithms will have to produce labelings specifying
what objects are present in the images.

The weights learned by the model implemented in Caffe have been directly
converted in Keras (for more information refer to: https://gist.github.com/baraldilorenzo/07d
7802847aaad0a35d3) and can be used for preloading into the Keras model, which is
implemented next as described in the paper:

from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np

# define a VGG16 network
def VGG_16(weights_path=None):

145

http://caffe.berkeleyvision.org/
http://image-net.org/challenges/LSVRC/2012/
https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3


model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
#top layer of the VGG net
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
if weights_path:
model.load_weights(weights_path)
return model
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Recognizing cats with a
VGG-16 net
Now let us test the image of a :

im = cv2.resize(cv2.imread('cat.jpg'), (224, 224)).astype(np.float32)
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)

# Test pretrained model
model = VGG_16('/Users/gulli/Keras/codeBook/code/data/vgg16_weights.h5')
optimizer = SGD()
model.compile(optimizer=optimizer, loss='categorical_crossentropy')
out = model.predict(im)
print np.argmax(out)

When the code is executed, the class 285 is returned, which corresponds (for more
information refer to: https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a) to Egyptian cat:
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Utilizing Keras built-in
VGG-16 net module
Keras applications are pre-built and pre-trained deep learning models. Weights are
downloaded automatically when instantiating a model and stored at
~/.keras/models/. Using built-in code is very easy:

from keras.models import Model
from keras.preprocessing import image
from keras.optimizers import SGD
from keras.applications.vgg16 import VGG16
import matplotlib.pyplot as plt
import numpy as np
import cv2

# prebuild model with pre-trained weights on imagenet
model = VGG16(weights='imagenet', include_top=True)
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')

# resize into VGG16 trained images' format
im = cv2.resize(cv2.imread('steam-locomotive.jpg'), (224, 224))
im = np.expand_dims(im, axis=0)

# predict
out = model.predict(im)
plt.plot(out.ravel())
plt.show()
print np.argmax(out)
#this should print 820 for steaming train

Now, let us consider a train:

It's like the ones my grandfather drove. If we run the code, we get result 820, which
is the image net code for steaming train. Equally important is the fact that all the
other classes have very weak support, as shown in the following graph:
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To conclude this section, note that VGG-16 is only one of the modules that are pre-
built in Keras. A full list of pre-trained Keras models is available at: https://keras.io/appli
cations/.
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Recycling pre-built deep
learning models for
extracting features
One very simple idea is to use VGG-16 and, more generally, DCNN, for feature
extraction. This code implements the idea by extracting features from a specific
layer:

from keras.applications.vgg16 import VGG16
from keras.models import Model
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np

# pre-built and pre-trained deep learning VGG16 model
base_model = VGG16(weights='imagenet', include_top=True)
for i, layer in enumerate(base_model.layers):
     print (i, layer.name, layer.output_shape)

# extract features from block4_pool block
model =
Model(input=base_model.input, output=base_model.get_layer('block4_pool').output)
img_path = 'cat.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# get the features from this block
features = model.predict(x)

Now you might wonder why we want to extract the features from an intermediate
layer in a DCNN. The key intuition is that, as the network learns to classify images
into categories, each layer learns to identify the features that are necessary to do
the final classification. Lower layers identify lower order features such as color and
edges, and higher layers compose these lower order feature into higher order
features such as shapes or objects. Hence the intermediate layer has the capability
to extract important features from an image, and these features are more likely to
help in different kinds of classification. This has multiple advantages. First, we can
rely on publicly available large-scale training and transfer this learning to novel
domains. Second, we can save time for expensive large training. Third, we can
provide reasonable solutions even when we don't have a large number of training
examples for our domain. We also get a good starting network shape for the task at
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hand, instead of guessing it.
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Very deep inception-v3 net
used for transfer learning
Transfer learning is a very powerful deep learning technique which has more
applications in different domains. The intuition is very simple and can be explained
with an analogy. Suppose you want to learn a new language, say Spanish; then it
could be useful to start from what you already know in a different language, say
English.

Following this line of thinking, computer vision researchers now commonly use
pre-trained CNNs to generate representations for novel tasks, where the dataset
may not be large enough to train an entire CNN from scratch. Another common
tactic is to take the pre-trained ImageNet network and then to fine-tune the entire
network to the novel task.

Inception-v3 net is a very deep ConvNet developed by Google. Keras implements
the full network described in the following diagram and it comes pre-trained on
ImageNet. The default input size for this model is 299 x 299 on three channels:

This skeleton example is inspired by a scheme available at: https://keras.io/applications/.
We suppose to have a training dataset D in a domain, different from ImageNet. D
has 1,024 features in input and 200 categories in output. Let us see a code
fragment:

from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model

152

https://keras.io/applications/


from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K

# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)

We use a trained inception-v3; we do not include the top model because we want to
fine-tune on D. The top level is a dense layer with 1,024 inputs and where the last
output level is a softmax dense layer with 200 classes of output. x =
GlobalAveragePooling2D()(x) is used to convert the input to the correct shape for the
dense layer to handle. In fact, base_model.output tensor has the shape (samples,
channels, rows, cols) for dim_ordering="th" or (samples, rows, cols, channels) for
dim_ordering="tf" but dense needs them as (samples, channels) and
GlobalAveragePooling2D averages across (rows, cols). So if you look at the last four
layers (where include_top=True), you see these shapes:

# layer.name, layer.input_shape, layer.output_shape
('mixed10', [(None, 8, 8, 320), (None, 8, 8, 768), (None, 8, 8, 768), (None, 8, 8, 192)], (None, 8, 8, 2048))
('avg_pool', (None, 8, 8, 2048), (None, 1, 1, 2048))
('flatten', (None, 1, 1, 2048), (None, 2048))
('predictions', (None, 2048), (None, 1000))

When you do include_top=False, you are removing the last three layers and exposing
the mixed10 layer, so the GlobalAveragePooling2D layer converts the (None, 8, 8, 2048)
to (None, 2048), where each element in the (None, 2048) tensor is the average
value for each corresponding (8, 8) subtensor in the (None, 8, 8, 2048) tensor:

# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)# let's add a fully-connected layer as first layer
x = Dense(1024, activation='relu')(x)# and a logistic layer with 200 classes as last layer
predictions = Dense(200, activation='softmax')(x)# model to train
model = Model(input=base_model.input, output=predictions)

All the convolutional levels are pre-trained, so we freeze them during the training of
the full model:

# that is, freeze all convolutional InceptionV3 layers
for layer in base_model.layers: layer.trainable = False

The model is then compiled and trained for a few epochs so that the top layers are
trained:

# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

# train the model on the new data for a few epochs model.fit_generator(...)

Then we freeze the top layers in inception and fine-tune some inception layer. In
this example, we decide to freeze the first 172 layers (an hyperparameter to tune):
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# we chose to train the top 2 inception blocks, that is, we will freeze

# the first 172 layers and unfreeze the rest: 
for layer in 
model.layers[:172]: layer.trainable = False 
for layer in 
model.layers[172:]: layer.trainable = True

The model is then recompiled for fine-tune optimization. We need to recompile the
model for these modifications to take effect:

# we use SGD with a low learning rate
from keras.optimizers
import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')

# we train our model again (this time fine-tuning the top 2 inception blocks)
# alongside the top Dense layers
model.fit_generator(...)

Now we have a new deep network that reuses the standard Inception-v3 network,
but it is trained on a new domain D via transfer learning. Of course, there are many
parameters to fine-tune for achieving good accuracy. However, we are now reusing
a very large pre-trained network as a starting point via transfer learning. In doing
so, we can save the need to train on our machines by reusing what is already
available in Keras.
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Summary
In this chapter, we learned how to use Deep Learning ConvNets for recognizing
MNIST handwritten characters with high accuracy. Then we used the CIFAR 10
dataset to build a deep learning classifier in 10 categories, and the ImageNet
datasets to build an accurate classifier in 1,000 categories. In addition, we
investigated how to use large deep learning networks such as VGG16 and very
deep networks such as InceptionV3. The chapter concluded with a discussion on
transfer learning in order to adapt pre-built models trained on large datasets so that
they can work well on a new domain.

In the next chapter, we will introduce generative adversarial networks used to
reproduce synthetic data that looks like data generated by humans; and we will
present WaveNet, a deep neural network used for reproducing human voice and
musical instruments with high quality.
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Generative Adversarial
Networks and WaveNet
In this chapter, we will discuss generative adversarial networks (GANs) and
WaveNets. GANs have been defined as the most interesting idea in the last 10
years in ML (https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroug
hs-in-deep-learning) by Yann LeCun, one of the fathers of deep learning. GANs are
able to learn how to reproduce synthetic data that looks real. For instance,
computers can learn how to paint and create realistic images. The idea was
originally proposed by Ian Goodfellow (for more information refer to: NIPS 2016
Tutorial: Generative Adversarial Networks, by I. Goodfellow, 2016); he was
worked with the University of Montreal, Google Brain, and recently OpenAI (https://
openai.com/). WaveNet is a deep generative network proposed by Google DeepMind
to teach computers how to reproduce human voices and musical instruments, both
with impressive quality.

In this chapter, we will cover cover the following topics:

What is GAN?
Deep convolutional GAN
Applications of GAN
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What is a GAN?
The key intuition of GAN can be easily considered as analogous to art
forgery, which is the process of creating works of art (https://en.wikipedia.org/wiki/Art)
that are falsely credited to other, usually more famous, artists. GANs train two
neural nets simultaneously, as shown in the next diagram. The generator
G(Z) makes the forgery, and the discriminator D(Y) can judge how realistic the
reproductions based on its observations of authentic pieces of arts and copies are.
D(Y) takes an input, Y, (for instance, an image) and expresses a vote to judge how
real the input is--in general, a value close to zero denotes real and a value close to
one denotes forgery. G(Z) takes an input from a random noise, Z, and trains itself
to fool D into thinking that whatever G(Z) produces is real. So, the goal of training
the discriminator D(Y) is to maximize D(Y) for every image from the true data
distribution, and to minimize D(Y) for every image not from the true data
distribution. So, G and D play an opposite game; hence the name adversarial
training. Note that we train G and D in an alternating manner, where each of their
objectives is expressed as a loss function optimized via a gradient descent. The
generative model learns how to forge more successfully, and the discriminative
model learns how to recognize forgery more successfully. The discriminator
network (usually a standard convolutional neural network) tries to classify whether
an input image is real or generated. The important new idea is to backpropagate
through both the discriminator and the generator to adjust the generator's
parameters in such a way that the generator can learn how to fool the the
discriminator for an increasing number of situations. At the end, the generator will
learn how to produce forged images that are indistinguishable from real ones:

Of course, GANs require finding the equilibrium in a game with two players. For
effective learning it is required that if a player successfully moves downhill in a
round of updates, the same update must move the other player downhill too. Think
about it! If the forger learns how to fool the judge on every occasion, then the
forger himself has nothing more to learn. Sometimes the two players eventually
reach an equilibrium, but this is not always guaranteed and the two players can
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continue playing for a long time. An example of learning from both sides has been
provided in the following graph:
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Some GAN applications
We have seen that the generator learns how to forge data. This means that it learns
how to create new synthetic data, which is created by the network, that looks real
and like it was created by humans. Before going into details of some GAN code, I'd
like to share the results of a recent paper: StackGAN: Text to Photo-Realistic
Image Synthesis with Stacked Generative Adversarial Networks, by Han Zhang,
Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and
Dimitris Metaxas (the code is available online
at: https://github.com/hanzhanggit/StackGAN).
Here, a GAN has been used to synthesize forged images starting from a text
description. The results are impressive. The first column is the real image in the test
set, and the rest of the columns contain images generated from the same text
description by Stage-I and Stage-II of StackGAN. More examples are available on
YouTube (https://www.youtube.com/watch?v=SuRyL5vhCIM&feature=youtu.be):

Now let us see how a GAN can learn to forge the MNIST dataset. In this case,
there is a combination of GAN and ConvNets (for more information refer
to: Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks, by A. Radford, L. Metz, and S. Chintala, arXiv:
1511.06434, 2015) used for the generator and the discriminator networks. At the
beginning, the generator creates nothing understandable, but after a few iterations,
synthetic forged numbers are progressively clearer and clearer. In the following
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image, the panels are ordered by increasing training epochs, and you can see the
quality improving among panels:

The following image represents the forged handwritten numbers as the number of
iterations increases:

The following image represents the forged handwritten numbers at the hand of
computation. The results are virtually indistinguishable from the original:

One of the coolest uses of GAN is arithmetic on faces in the generator's vector Z.
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In other words, if we stay in the space of synthetic forged images, it is possible to
see things like this:

[smiling woman] - [neutral woman] + [neutral man] = [smiling man]

Or like this:

[man with glasses] - [man without glasses] + [woman without glasses] =
[woman with glasses]

The next image is taken from the article, Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks, by A. Radford, L.
Metz, and S. Chintala, arXiv: 1511.06434, November, 2015:
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Deep convolutional
generative adversarial
networks
The deep convolutional generative adversarial networks (DCGAN)
are introduced in the paper: Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, by A. Radford, L. Metz, and S.
Chintala, arXiv: 1511.06434, 2015. The generator uses a 100-dimensional, uniform
distribution space, Z, which is then projected into a smaller space by a series of vis-
a-vis convolution operations. An example is shown in the following figure:

A DCGAN generator can be described by the following Keras code; it is also
described by one implementation, available at: https://github.com/jacobgil/keras-dcgan:

def generator_model():
    model = Sequential()
    model.add(Dense(input_dim=100, output_dim=1024))
    model.add(Activation('tanh'))
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    model.add(Dense(128*7*7))
    model.add(BatchNormalization())
    model.add(Activation('tanh'))
    model.add(Reshape((128, 7, 7), input_shape=(128*7*7,)))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(64, 5, 5, border_mode='same'))
    model.add(Activation('tanh'))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(1, 5, 5, border_mode='same'))
    model.add(Activation('tanh'))
    return model

Note that the code runs with Keras 1.x syntax. However, it is possible to run it with
Keras 2.0 thanks to the Keras legacy interfaces. In this case a few warnings are
reported as shown in the following figure:

Now let’s see the code. The first dense layer takes a vector of 100 dimensions as
input and it produces 1,024 dimensions with the activation function tanh as the
output. We assume that the input is sampled from a uniform distribution in [-1, 1].
The next dense layer produces data of 128 x 7 x 7 in the output using batch
normalization (for more information refer to Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, by S. Ioffe and C.
Szegedy, arXiv: 1502.03167, 2014), a technique that can help stabilize learning by
normalizing the input to each unit to zero mean and unit variance. Batch
normalization has been empirically proven to accelerate the training in many
situations, reduce the problems of poor initialization, and more generally produce
more accurate results. There is also a Reshape() module that produces data of 127 x
7 x 7 (127 channels, 7 width, and 7 height), dim_ordering to tf, and a UpSampling()
module that produces a repetition of each one into a 2 x 2 square. After that, we
have a convolutional layer producing 64 filters on 5 x 5 convolutional kernels with
the activation tanh, followed by a new UpSampling() and a final convolution with one
filter, and on 5 x 5 convolutional kernels with the activation tanh. Notice that this
ConvNet has no pooling operations. The discriminator can be described with the
following code:

def discriminator_model():
    model = Sequential()
    model.add(Convolution2D(64, 5, 5, border_mode='same',
    input_shape=(1, 28, 28)))
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Convolution2D(128, 5, 5))
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    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation('tanh'))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model

The code takes a standard MNIST image with the shape (1, 28, 28) and applies a
convolution with 64 filters of size 5 x 5 with tanh as the activation function. This is
followed by a max-pooling operation of size 2 x 2 and by a further convolution
max-pooling operation. The last two stages are dense, with the final one being the
prediction for forgery, which consists of only one neuron with a sigmoid activation
function. For a chosen number of epochs, the generator and discriminator are in
turn trained by using binary_crossentropy as loss function. At each epoch, the
generator makes a number of predictions (for example, it creates forged MNIST
images) and the discriminator tries to learn after mixing the prediction with real
MNIST images. After 32 epochs, the generator learns to forge this set of
handwritten numbers. No one has programmed the machine to write but it has
learned how to write numbers that are indistinguishable from the ones written by
humans. Note that training GANs could be very difficult because it is necessary to
find the equilibrium between two players. If you are interested in this topic, I'd
advise you to have a look at a series of tricks collected by practitioners (https://github.
com/soumith/ganhacks):
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Keras adversarial GANs for
forging MNIST
Keras adversarial (https://github.com/bstriner/keras-adversarial) is an open source Python
package for building GANs developed by Ben Striner (https://github.com/bstriner and htt
ps://github.com/bstriner/keras-adversarial/blob/master/LICENSE.txt). Since Keras just recently
moved to 2.0, I suggest downloading latest Keras adversarial package:

git clone --depth=50 --branch=master https://github.com/bstriner/keras-adversarial.git

And install setup.py:

python setup.py install

Note that compatibility with Keras 2.0 is tracked in this issue https://github.com/bstriner/
keras-adversarial/issues/11.

 If the generator G and the discriminator D are based on the same model, M, then
they can be combined into an adversarial model; it uses the same input, M, but
separates targets and metrics for G and D. The library has the following API call:

adversarial_model = AdversarialModel(base_model=M,
    player_params=[generator.trainable_weights, discriminator.trainable_weights],
    player_names=["generator", "discriminator"])

If the generator G and the discriminator D are based on the two different models,
then it is possible to use this API call:

adversarial_model = AdversarialModel(player_models=[gan_g, gan_d],
    player_params=[generator.trainable_weights, discriminator.trainable_weights],
    player_names=["generator", "discriminator"])

Let's see an example of a computation with MNIST:

import matplotlib as mpl
# This line allows mpl to run with no DISPLAY defined
mpl.use('Agg')

Let us see the open source code (https://github.com/bstriner/keras-adversarial/blob/master/exa
mples/example_gan_convolutional.py). Note that the code uses the syntax of Keras 1.x,
but it also runs on the top of Keras 2.x thanks to a convenient set of utility
functions contained in legacy.py. The code for legacy.py is reported in Appendix,
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Conclusion, and is available at https://github.com/bstriner/keras-adversarial/blob/master/keras_
adversarial/legacy.py.

First, the open source example imports a number of modules. We have seen all of
them previously, with the exception of LeakyReLU, a special version of ReLU that
allows a small gradient when the unit is not active. Experimentally, it has been
shown that LeakyReLU can improve the performance of GANs (for more
information refer to: Empirical Evaluation of Rectified Activations in
Convolutional Network, by B. Xu, N. Wang, T. Chen, and M. Li,
arXiv:1505.00853, 2014) in a number of situations:

from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyReLU,
    Input, Activation, BatchNormalization
from keras.models import Sequential, Model
from keras.layers.convolutional import Convolution2D, UpSampling2D
from keras.optimizers import Adam
from keras.regularizers import l1, l1l2
from keras.datasets import mnist

import pandas as pd
import numpy as np

Then, specific modules for GANs are imported:

from keras_adversarial import AdversarialModel, ImageGridCallback,
    simple_gan, gan_targets
from keras_adversarial import AdversarialOptimizerSimultaneous,
    normal_latent_sampling, AdversarialOptimizerAlternating
from image_utils import dim_ordering_fix, dim_ordering_input,
    dim_ordering_reshape, dim_ordering_unfix

Adversarial models train for multiplayer games. Given a base model with n targets
and k players, create a model with n*k targets, where each player optimizes loss on
that player's targets. In addition, simple_gan generates a GAN with the given
gan_targets. Note that in the library, the labels for generator and discriminator are
opposite; intuitively, this is a standard practice for GANs:

def gan_targets(n):
    """
    Standard training targets [generator_fake, generator_real, discriminator_fake,     
    discriminator_real] = [1, 0, 0, 1]
    :param n: number of samples
    :return: array of targets
    """
    generator_fake = np.ones((n, 1))
    generator_real = np.zeros((n, 1))
    discriminator_fake = np.zeros((n, 1))
    discriminator_real = np.ones((n, 1))
    return [generator_fake, generator_real, discriminator_fake, discriminator_real]

The example defines the generator in a similar way to what we have seen
previously. However, in this case, we use the functional syntax—each module in
our pipeline is simply passed as input to the following module. So, the first module
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is dense, initialized by using glorot_normal. This initialization uses Gaussian noise
scaled by the sum of the inputs plus outputs from the node. The same kind of
initialization is used for all of the other modules. The mode=2 parameter in
BatchNormlization function produces feature-wise normalization based on per-batch
statistics. Experimentally, this produces better results:

def model_generator():
    nch = 256
    g_input = Input(shape=[100])
    H = Dense(nch * 14 * 14, init='glorot_normal')(g_input)
    H = BatchNormalization(mode=2)(H)
    H = Activation('relu')(H)
    H = dim_ordering_reshape(nch, 14)(H)
    H = UpSampling2D(size=(2, 2))(H)
    H = Convolution2D(int(nch / 2), 3, 3, border_mode='same', 
        init='glorot_uniform')(H)
    H = BatchNormalization(mode=2, axis=1)(H)
    H = Activation('relu')(H)
    H = Convolution2D(int(nch / 4), 3, 3, border_mode='same', 
        init='glorot_uniform')(H)
    H = BatchNormalization(mode=2, axis=1)(H)
    H = Activation('relu')(H)
    H = Convolution2D(1, 1, 1, border_mode='same', init='glorot_uniform')(H)
    g_V = Activation('sigmoid')(H)
    return Model(g_input, g_V)

The discriminator is very similar to the one defined previously in this chapter. The
only major difference is the adoption of LeakyReLU:

def model_discriminator(input_shape=(1, 28, 28), dropout_rate=0.5):
    d_input = dim_ordering_input(input_shape, name="input_x")
    nch = 512
    H = Convolution2D(int(nch / 2), 5, 5, subsample=(2, 2),
        border_mode='same', activation='relu')(d_input)
    H = LeakyReLU(0.2)(H)
    H = Dropout(dropout_rate)(H)
    H = Convolution2D(nch, 5, 5, subsample=(2, 2),
        border_mode='same', activation='relu')(H)
    H = LeakyReLU(0.2)(H)
    H = Dropout(dropout_rate)(H)
    H = Flatten()(H)
    H = Dense(int(nch / 2))(H)
    H = LeakyReLU(0.2)(H)
    H = Dropout(dropout_rate)(H)
    d_V = Dense(1, activation='sigmoid')(H)
    return Model(d_input, d_V)

Then, two simple functions for loading and normalizing MNIST data are defined:

def mnist_process(x):
    x = x.astype(np.float32) / 255.0
    return x

def mnist_data():
    (xtrain, ytrain), (xtest, ytest) = mnist.load_data()
    return mnist_process(xtrain), mnist_process(xtest)
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As a next step, the GAN is defined as a combination of generator and discriminator
in a joint GAN model. Note that the weights are initialized with
normal_latent_sampling, which samples from a normal Gaussian distribution:

if __name__ == "__main__":
    # z in R^100
    latent_dim = 100
    # x in R^{28x28}
    input_shape = (1, 28, 28)
    # generator (z -> x)
    generator = model_generator()
    # discriminator (x -> y)
    discriminator = model_discriminator(input_shape=input_shape)
    # gan (x - > yfake, yreal), z generated on GPU
    gan = simple_gan(generator, discriminator, normal_latent_sampling((latent_dim,)))
    # print summary of models
    generator.summary()
    discriminator.summary()
    gan.summary()

After this, the example creates our GAN and it compiles the model trained using the
Adam optimizer, with binary_crossentropy used as a loss function:

# build adversarial model
model = AdversarialModel(base_model=gan,
    player_params=[generator.trainable_weights, discriminator.trainable_weights],
    player_names=["generator", "discriminator"])
model.adversarial_compile(adversarial_optimizer=AdversarialOptimizerSimultaneous(),
    player_optimizers=[Adam(1e-4, decay=1e-4), Adam(1e-3, decay=1e-4)],
    loss='binary_crossentropy')

The generator for creating new images that look like real ones is defined. Each
epoch will generate a new forged image during training that looks like the original:

def generator_sampler():
    zsamples = np.random.normal(size=(10 * 10, latent_dim))
    gen = dim_ordering_unfix(generator.predict(zsamples))
    return gen.reshape((10, 10, 28, 28))

generator_cb = ImageGridCallback(
    "output/gan_convolutional/epoch-{:03d}.png",generator_sampler)
xtrain, xtest = mnist_data()
xtrain = dim_ordering_fix(xtrain.reshape((-1, 1, 28, 28)))
xtest = dim_ordering_fix(xtest.reshape((-1, 1, 28, 28)))
y = gan_targets(xtrain.shape[0])
ytest = gan_targets(xtest.shape[0])
history = model.fit(x=xtrain, y=y,
validation_data=(xtest, ytest), callbacks=[generator_cb], nb_epoch=100,
    batch_size=32)
df = pd.DataFrame(history.history)
df.to_csv("output/gan_convolutional/history.csv")
generator.save("output/gan_convolutional/generator.h5")
discriminator.save("output/gan_convolutional/discriminator.h5")

Note that dim_ordering_unfix is utility function for supporting different image
ordering defined in image_utils.py, as follows:
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def dim_ordering_fix(x):
    if K.image_dim_ordering() == 'th':
        return x
    else:
        return np.transpose(x, (0, 2, 3, 1))

Now let's run the code and see the loss for the generator and discriminator. In the
following screenshot, we see a dump of the networks for the discriminator and the
generator:

The following screenshot, shows the number of sample used for training and for
validation:
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After 5-6 iterations, we already have acceptable artificial images generated and the
computer has learned how to reproduce handwritten characters, as shown in the
following image:
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Keras adversarial GANs for
forging CIFAR
Now we can use a GAN approach to learn how to forge CIFAR-10 and create
synthetic images that look real. Let's see the open source code (https://github.com/bstrin
er/keras-adversarial/blob/master/examples/example_gan_cifar10.py).  Again, note that it uses
the syntax of Keras 1.x, but it also runs on the top of Keras 2.x thanks to a
convenient set of utility functions contained in legacy.py (https://github.com/bstriner/keras-
adversarial/blob/master/keras_adversarial/legacy.py). First, the open source example imports
a number of packages:

import matplotlib as mpl
# This line allows mpl to run with no DISPLAY defined
mpl.use('Agg')
import pandas as pd
import numpy as np
import os
from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyReLU, 
    Activation, BatchNormalization, SpatialDropout2D
from keras.layers.convolutional import Convolution2D, UpSampling2D, 
    MaxPooling2D, AveragePooling2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard
from keras.regularizers import l1l2
from keras_adversarial import AdversarialModel, ImageGridCallback, 
    simple_gan, gan_targets
from keras_adversarial import AdversarialOptimizerSimultaneous, 
    normal_latent_sampling, fix_names
import keras.backend as K
from cifar10_utils import cifar10_data
from image_utils import dim_ordering_fix, dim_ordering_unfix, 
    dim_ordering_shape

Next, it defines a generator that uses a combination of convolutions with l1 and l2
regularization, batch normalization, and upsampling. Note that axis=1 says to
normalize the dimension of the tensor first and mode=0 says to adopt a feature-wise
normalization. This particular net is the result of many fine-tuning experiments, but
it is still essentially a sequence of convolution 2D and upsampling operations, which
uses a Dense module at the beginning and a sigmoid at the end. In addition, each
convolution uses a LeakyReLU activation function and BatchNormalization:

def model_generator():
    model = Sequential()
    nch = 256
    reg = lambda: l1l2(l1=1e-7, l2=1e-7)
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    h = 5
    model.add(Dense(input_dim=100, output_dim=nch * 4 * 4, W_regularizer=reg()))
    model.add(BatchNormalization(mode=0))
    model.add(Reshape(dim_ordering_shape((nch, 4, 4))))
    model.add(Convolution2D(nch/2, h, h, border_mode='same', W_regularizer=reg()))
    model.add(BatchNormalization(mode=0, axis=1))
    model.add(LeakyReLU(0.2))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(nch / 2, h, h, border_mode='same', W_regularizer=reg()))
    model.add(BatchNormalization(mode=0, axis=1))
    model.add(LeakyReLU(0.2))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(nch / 4, h, h, border_mode='same', W_regularizer=reg()))
    model.add(BatchNormalization(mode=0, axis=1))
    model.add(LeakyReLU(0.2))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(3, h, h, border_mode='same', W_regularizer=reg()))
    model.add(Activation('sigmoid'))
    return model

Then, a discriminator is defined. Again, we have a sequence of convolution 2D
operations, and in this case we adopt SpatialDropout2D, which drops entire 2D
feature maps instead of individual elements. We also use MaxPooling2D and
AveragePooling2D for similar reasons:

def model_discriminator():
    nch = 256
    h = 5
    reg = lambda: l1l2(l1=1e-7, l2=1e-7)
    c1 = Convolution2D(nch / 4, h, h, border_mode='same', W_regularizer=reg(),
    input_shape=dim_ordering_shape((3, 32, 32)))
    c2 = Convolution2D(nch / 2, h, h, border_mode='same', W_regularizer=reg())
    c3 = Convolution2D(nch, h, h, border_mode='same', W_regularizer=reg())
    c4 = Convolution2D(1, h, h, border_mode='same', W_regularizer=reg())
    def m(dropout):
        model = Sequential()
        model.add(c1)
        model.add(SpatialDropout2D(dropout))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(LeakyReLU(0.2))
        model.add(c2)
        model.add(SpatialDropout2D(dropout))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(LeakyReLU(0.2))
        model.add(c3)
        model.add(SpatialDropout2D(dropout))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(LeakyReLU(0.2))
        model.add(c4)
        model.add(AveragePooling2D(pool_size=(4, 4), border_mode='valid'))
        model.add(Flatten())
        model.add(Activation('sigmoid'))
        return model
    return m

It is now possible to generate proper GANs. The following function takes multiple
inputs, including a generator, a discriminator, the number of latent dimensions, and
the GAN targets:
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def example_gan(adversarial_optimizer, path, opt_g, opt_d, nb_epoch, generator,
        discriminator, latent_dim, targets=gan_targets, loss='binary_crossentropy'):
    csvpath = os.path.join(path, "history.csv")
    if os.path.exists(csvpath):
        print("Already exists: {}".format(csvpath))
    return

Then two GANs are created, one with dropout and the other without dropout for
the discriminator:

print("Training: {}".format(csvpath))
# gan (x - > yfake, yreal), z is gaussian generated on GPU
# can also experiment with uniform_latent_sampling
d_g = discriminator(0)
d_d = discriminator(0.5)
generator.summary()
d_d.summary()
gan_g = simple_gan(generator, d_g, None)
gan_d = simple_gan(generator, d_d, None)
x = gan_g.inputs[1]
z = normal_latent_sampling((latent_dim,))(x)
# eliminate z from inputs
gan_g = Model([x], fix_names(gan_g([z, x]), gan_g.output_names))
gan_d = Model([x], fix_names(gan_d([z, x]), gan_d.output_names))

The two GANs are now combined into an adversarial model with separate weights,
and the model is then compiled:

# build adversarial model
model = AdversarialModel(player_models=[gan_g, gan_d],
    player_params=[generator.trainable_weights, d_d.trainable_weights],
    player_names=["generator", "discriminator"])
model.adversarial_compile(adversarial_optimizer=adversarial_optimizer,
    player_optimizers=[opt_g, opt_d], loss=loss)

Next, there is a simple callback to sample images and a print on the file where the
method ImageGridCallback is defined:

# create callback to generate images
zsamples = np.random.normal(size=(10 * 10, latent_dim))
def generator_sampler():
    xpred = dim_ordering_unfix(generator.predict(zsamples)).transpose((0, 2, 3, 1))
    return xpred.reshape((10, 10) + xpred.shape[1:])
generator_cb =
    ImageGridCallback(os.path.join(path, "epoch-{:03d}.png"),
    generator_sampler, cmap=None)

Now, the CIFAR-10 data is loaded and the model is fit. If the backend is
TensorFlow, then the loss information is saved into a TensorBoard to check how
the loss decreases over time. The history is also conveniently saved into a CVS
format, and the models' weights are also stored in an h5 format:

# train model
xtrain, xtest = cifar10_data()
y = targets(xtrain.shape[0])
ytest = targets(xtest.shape[0])
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callbacks = [generator_cb]
if K.backend() == "tensorflow":
    callbacks.append(TensorBoard(log_dir=os.path.join(path, 'logs'),
        histogram_freq=0, write_graph=True, write_images=True))
history = model.fit(x=dim_ordering_fix(xtrain),y=y,
    validation_data=(dim_ordering_fix(xtest), ytest),
    callbacks=callbacks, nb_epoch=nb_epoch,
    batch_size=32)
# save history to CSV
df = pd.DataFrame(history.history)
df.to_csv(csvpath)
# save models
generator.save(os.path.join(path, "generator.h5"))
d_d.save(os.path.join(path, "discriminator.h5"))

Finally, the whole GANs can be run. The generator samples from a space with 100
latent dimensions, and we've used Adam as optimizer for both GANs:

def main():
    # z in R^100
    latent_dim = 100
    # x in R^{28x28}
    # generator (z -> x)
    generator = model_generator()
    # discriminator (x -> y)
    discriminator = model_discriminator()
    example_gan(AdversarialOptimizerSimultaneous(), "output/gan-cifar10",
        opt_g=Adam(1e-4, decay=1e-5),
        opt_d=Adam(1e-3, decay=1e-5),
        nb_epoch=100, generator=generator, discriminator=discriminator,
        latent_dim=latent_dim)
if __name__ == "__main__":
main()

In order to have a complete view on the open source code, we need to include a
few simple utility functions for storing the grid of images:

from matplotlib import pyplot as plt, gridspec
import os

def write_image_grid(filepath, imgs, figsize=None, cmap='gray'):
    directory = os.path.dirname(filepath)
    if not os.path.exists(directory):
        os.makedirs(directory)
    fig = create_image_grid(imgs, figsize, cmap=cmap)
    fig.savefig(filepath)
    plt.close(fig)

def create_image_grid(imgs, figsize=None, cmap='gray'):
    n = imgs.shape[0]
    m = imgs.shape[1]
    if figsize is None:
        figsize=(n,m)
    fig = plt.figure(figsize=figsize)
    gs1 = gridspec.GridSpec(n, m)
    gs1.update(wspace=0.025, hspace=0.025) # set the spacing between axes.
    for i in range(n):
        for j in range(m):
            ax = plt.subplot(gs1[i, j])
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            img = imgs[i, j, :]
    ax.imshow(img, cmap=cmap)
    ax.axis('off')
    return fig

In addition, we need some utility methods for dealing with different image ordering
(for example, Theano or TensorFlow):

import keras.backend as K
import numpy as np
from keras.layers import Input, Reshape

def dim_ordering_fix(x):
    if K.image_dim_ordering() == 'th':
        return x
    else:
        return np.transpose(x, (0, 2, 3, 1))

def dim_ordering_unfix(x):
    if K.image_dim_ordering() == 'th':
        return x
    else:
        return np.transpose(x, (0, 3, 1, 2))

def dim_ordering_shape(input_shape):
    if K.image_dim_ordering() == 'th':
        return input_shape
    else:
        return (input_shape[1], input_shape[2], input_shape[0])

def dim_ordering_input(input_shape, name):
    if K.image_dim_ordering() == 'th':
        return Input(input_shape, name=name)
    else:
        return Input((input_shape[1], input_shape[2], input_shape[0]), name=name)

def dim_ordering_reshape(k, w, **kwargs):
    if K.image_dim_ordering() == 'th':
        return Reshape((k, w, w), **kwargs)
    else:
        return Reshape((w, w, k), **kwargs)

# One more utility function is used to fix names
def fix_names(outputs, names):
    if not isinstance(outputs, list):
        outputs = [outputs]
    if not isinstance(names, list):
        names = [names]
    return [Activation('linear', name=name)(output) 
        for output, name in zip(outputs, names)]

The following screenshot, shows a dump of the defined networks:
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If we run the open source code, the very first iteration will generate unrealistic
images. However, after 99 iterations, the network will learn to forge images
that look like real CIFAR-10 images, as shown here:
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In the following images, we see the real CIFAR-10 image on the right and the
forged one on the left:

Forged images Real CIFAR-10 images
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WaveNet — a generative
model for learning how to
produce audio
WaveNet is a deep generative model for producing raw audio waveforms. This
breakthrough technology was introduced (https://deepmind.com/blog/wavenet-generative-mo
del-raw-audio/) by Google DeepMind (https://deepmind.com/) for teaching users how to
speak to computers. The results are truly impressive, and you can find online
examples of synthetic voices where the computer learns how to talk with the voices
of celebrities such as Matt Damon. So, you might wonder why learning to
synthesize audio is so difficult. Well, each digital sound we hear is based on 16,000
samples per second (sometimes, 48,000 or more), and building a predictive model
where we learn to reproduce a sample based on all the previous ones is a very
difficult challenge. Nevertheless, there are experiments showing that WaveNet has
improved current state-of-the-art text-to-speech (TTS) systems, reducing the
difference with human voices by 50% for both US English and Mandarin Chinese.
What is even cooler is that DeepMind proved that WaveNet can also be used to
teach computers how to generate the sound of musical instruments such as piano
music. Now it's time for some definitions. TTS systems are typically divided into
two different classes:

Concatenative TTS: This is where single speech voice fragments are first
memorized and then recombined when the voice has to be reproduced.
However, this approach does not scale because it is only possible to
reproduce the memorized voice fragments, and it is not possible to reproduce
new speakers or different types of audio without memorizing the fragments
from the beginning.
Parametric TTS: This is where a model is created for storing all the
characteristic features of the audio to be synthesized. Before WaveNet, the
audio generated with parametric TTS was less natural than concatenative
TTS. WaveNet improved the state-of-the-art by modeling directly the
production of audio sounds, instead of using intermediate signal processing
algorithms that have been used in the past.

In principle, WaveNet can be seen as a stack of 1D convolutional layers (we have
seen 2D convolution for images in Chapter 3, Deep Learning with ConvNets), with a

178

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/


constant stride of one and with no pooling layers. Note that the input and the
output have by construction the same dimension, so ConvNet is well-suited to
model sequential data such as audio. However, it has been shown that in order to
reach a large size for the receptive field (remember that the receptive field of a
neuron in a layer is the cross section of the previous layer from which neurons
provide inputs) in the output neuron it is necessary to either use a massive number
of large filters or prohibitively increase the the depth of the network. For this
reason, pure ConvNets are not so effective in learning how to synthesize audio.
The key intuition beyond WaveNet is the dilated causal convolutions (for more
information refer to the article: Multi-Scale Context Aggregation by Dilated
Convolutions, by Fisher Yu, Vladlen Koltun, 2016, available at: https://www.semanticsc
holar.org/paper/Multi-Scale-Context-Aggregation-by-Dilated-Yu-Koltun/420c46d7cafcb841309f02ad04
cf51cb1f190a48) or sometime atrous convolution (atrous is the bastardization of the
French expression à trous, meaning with holes, so an atrous convolution is a
convolution with holes), which simply means that some input values are skipped
when the filter of a convolutional layer is applied. As an example, in one dimension,
a filter, w, of size 3 with dilatation 1 would compute the following sum:

Thanks to this simple idea of introducing holes, it is possible to stack multiple
dilated convolutional layers with exponentially increasing filters, and learn long
range input dependencies without having an excessively deep network. A WaveNet
is therefore a ConvNet where the convolutional layers have various dilation factors,
allowing the receptive field to grow exponentially with depth and therefore
efficiently cover thousands of audio time-steps. When we train, the input are
sounds recorded from human speakers. The waveforms are quantized to a fixed
integer range. A WaveNet defines an initial convolutional layer accessing only the
current and previous input. Then, there is a stack of dilated ConvNet layers, still
accessing only current and previous inputs. At the end, there is a series of dense
layers that combine previous results, followed by a softmax activation function for
categorical outputs. At each step, a value is predicted from the network and fed
back into the input. At the same time, a new prediction for the next step is
computed. The loss function is the cross-entropy between the output for the
current step and the input at the next step .One Keras implementation developed by
Bas Veeling is available at: https://github.com/basveeling/wavenet and can be easily
installed via git:

pip install virtualenv
mkdir ~/virtualenvs && cd ~/virtualenvs
virtualenv wavenet
source wavenet/bin/activate
cd ~
git clone https://github.com/basveeling/wavenet.git
cd wavenet
pip install -r requirements.txt
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Note that this code is compatible with Keras 1.x and please check the issue at https://
github.com/basveeling/wavenet/issues/29, to understand what is the progress for porting it
on the top of Keras 2.x. Training is very simple but requires a significant amount of
computational power (so make sure that you have good GPU support):

$ python wavenet.py with 'data_dir=your_data_dir_name'

Sampling the network after training is equally very easy:

python wavenet.py predict with 'models/[run_folder]/config.json predict_seconds=1'

You can find a large number of hyperparameters online, which can be used for
fine-tuning our training process. The network is really deep, as explained by this
dump of internal layers. Note that the input waveform are divided into
(fragment_length = 1152 and nb_output_bins = 256), which is the tensor propagating
into WaveNet. WaveNet is organized in repeated blocks called residuals, each
consisting of a multiplied merge of two dilated convolutional modules (one with
sigmoid and the other with tanh activation), followed by a sum merged
convolutional. Note that each dilated convolution has holes of growing exponential
size (2 ** i) from 1 to 512, as defined in this piece of text:

def residual_block(x):
    original_x = x
    tanh_out = CausalAtrousConvolution1D(nb_filters, 2, atrous_rate=2 ** i,
        border_mode='valid', causal=True, bias=use_bias,
        name='dilated_conv_%d_tanh_s%d' % (2 ** i, s), activation='tanh',
        W_regularizer=l2(res_l2))(x)
    sigm_out = CausalAtrousConvolution1D(nb_filters, 2, atrous_rate=2 ** i,
        border_mode='valid', causal=True, bias=use_bias,
        name='dilated_conv_%d_sigm_s%d' % (2 ** i, s), activation='sigmoid',
        W_regularizer=l2(res_l2))(x)
    x = layers.Merge(mode='mul',
        name='gated_activation_%d_s%d' % (i, s))([tanh_out, sigm_out])
        res_x = layers.Convolution1D(nb_filters, 1, border_mode='same', bias=use_bias,
        W_regularizer=l2(res_l2))(x)
    skip_x = layers.Convolution1D(nb_filters, 1, border_mode='same', bias=use_bias,
        W_regularizer=l2(res_l2))(x)
    res_x = layers.Merge(mode='sum')([original_x, res_x])
    return res_x, skip_x

After the residual dilated block, there is a sequence of merged convolutional
modules, followed by two convolutional modules, followed by a softmax activation
function in nb_output_bins categories. The full network structure is here:

Layer (type) Output Shape Param # Connected to
====================================================================================================
input_part (InputLayer) (None, 1152, 256) 0
____________________________________________________________________________________________________
initial_causal_conv (CausalAtrou (None, 1152, 256) 131328 input_part[0][0]
____________________________________________________________________________________________________
dilated_conv_1_tanh_s0 (CausalAt (None, 1152, 256) 131072 initial_causal_conv[0][0]
____________________________________________________________________________________________________
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dilated_conv_1_sigm_s0 (CausalAt (None, 1152, 256) 131072 initial_causal_conv[0][0]
____________________________________________________________________________________________________
gated_activation_0_s0 (Merge) (None, 1152, 256) 0 dilated_conv_1_tanh_s0[0][0]
dilated_conv_1_sigm_s0[0][0]
______________________________________________________________________
_____________________________
convolution1d_1 (Convolution1D) (None, 1152, 256) 65536 gated_activation_0_s0[0][0]
____________________________________________________________________________________________________
merge_1 (Merge) (None, 1152, 256) 0 initial_causal_conv[0][0]
convolution1d_1[0][0]
____________________________________________________________________________________________________
dilated_conv_2_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_1[0][0]
____________________________________________________________________________________________________
dilated_conv_2_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_1[0][0]
____________________________________________________________________________________________________
gated_activation_1_s0 (Merge) (None, 1152, 256) 0 dilated_conv_2_tanh_s0[0][0]
dilated_conv_2_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_3 (Convolution1D) (None, 1152, 256) 65536 gated_activation_1_s0[0][0]
____________________________________________________________________________________________________
merge_2 (Merge) (None, 1152, 256) 0 merge_1[0][0]
convolution1d_3[0][0]
____________________________________________________________________________________________________
dilated_conv_4_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_2[0][0]
____________________________________________________________________________________________________
dilated_conv_4_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_2[0][0]
____________________________________________________________________________________________________
gated_activation_2_s0 (Merge) (None, 1152, 256) 0 dilated_conv_4_tanh_s0[0][0]
dilated_conv_4_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_5 (Convolution1D) (None, 1152, 256) 65536 gated_activation_2_s0[0][0]
____________________________________________________________________________________________________
merge_3 (Merge) (None, 1152, 256) 0 merge_2[0][0]
convolution1d_5[0][0]
____________________________________________________________________________________________________
dilated_conv_8_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_3[0][0]
____________________________________________________________________________________________________
dilated_conv_8_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_3[0][0]
____________________________________________________________________________________________________
gated_activation_3_s0 (Merge) (None, 1152, 256) 0 dilated_conv_8_tanh_s0[0][0]
dilated_conv_8_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_7 (Convolution1D) (None, 1152, 256) 65536 gated_activation_3_s0[0][0]
____________________________________________________________________________________________________
merge_4 (Merge) (None, 1152, 256) 0 merge_3[0][0]
convolution1d_7[0][0]
____________________________________________________________________________________________________
dilated_conv_16_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_4[0][0]
____________________________________________________________________________________________________
dilated_conv_16_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_4[0][0]
____________________________________________________________________________________________________
gated_activation_4_s0 (Merge) (None, 1152, 256) 0 dilated_conv_16_tanh_s0[0][0]
dilated_conv_16_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_9 (Convolution1D) (None, 1152, 256) 65536 gated_activation_4_s0[0][0]
____________________________________________________________________________________________________
merge_5 (Merge) (None, 1152, 256) 0 merge_4[0][0]
convolution1d_9[0][0]

181



____________________________________________________________________________________________________
dilated_conv_32_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_5[0][0]
____________________________________________________________________________________________________
dilated_conv_32_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_5[0][0]
____________________________________________________________________________________________________
gated_activation_5_s0 (Merge) (None, 1152, 256) 0 dilated_conv_32_tanh_s0[0][0]
dilated_conv_32_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_11 (Convolution1D) (None, 1152, 256) 65536 gated_activation_5_s0[0][0]
____________________________________________________________________________________________________
merge_6 (Merge) (None, 1152, 256) 0 merge_5[0][0]
convolution1d_11[0][0]
____________________________________________________________________________________________________
dilated_conv_64_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_6[0][0]
____________________________________________________________________________________________________
dilated_conv_64_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_6[0][0]
____________________________________________________________________________________________________
gated_activation_6_s0 (Merge) (None, 1152, 256) 0 dilated_conv_64_tanh_s0[0][0]
dilated_conv_64_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_13 (Convolution1D) (None, 1152, 256) 65536 gated_activation_6_s0[0][0]
____________________________________________________________________________________________________
merge_7 (Merge) (None, 1152, 256) 0 merge_6[0][0]
convolution1d_13[0][0]
____________________________________________________________________________________________________
dilated_conv_128_tanh_s0 (Causal (None, 1152, 256) 131072 merge_7[0][0]
____________________________________________________________________________________________________
dilated_conv_128_sigm_s0 (Causal (None, 1152, 256) 131072 merge_7[0][0]
____________________________________________________________________________________________________
gated_activation_7_s0 (Merge) (None, 1152, 256) 0 dilated_conv_128_tanh_s0[0][0]
dilated_conv_128_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_15 (Convolution1D) (None, 1152, 256) 65536 gated_activation_7_s0[0][0]
____________________________________________________________________________________________________
merge_8 (Merge) (None, 1152, 256) 0 merge_7[0][0]
convolution1d_15[0][0]
____________________________________________________________________________________________________
dilated_conv_256_tanh_s0 (Causal (None, 1152, 256) 131072 merge_8[0][0]
____________________________________________________________________________________________________
dilated_conv_256_sigm_s0 (Causal (None, 1152, 256) 131072 merge_8[0][0]
____________________________________________________________________________________________________
gated_activation_8_s0 (Merge) (None, 1152, 256) 0 dilated_conv_256_tanh_s0[0][0]
dilated_conv_256_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_17 (Convolution1D) (None, 1152, 256) 65536 gated_activation_8_s0[0][0]
____________________________________________________________________________________________________
merge_9 (Merge) (None, 1152, 256) 0 merge_8[0][0]
convolution1d_17[0][0]
____________________________________________________________________________________________________
dilated_conv_512_tanh_s0 (Causal (None, 1152, 256) 131072 merge_9[0][0]
____________________________________________________________________________________________________
dilated_conv_512_sigm_s0 (Causal (None, 1152, 256) 131072 merge_9[0][0]
____________________________________________________________________________________________________
gated_activation_9_s0 (Merge) (None, 1152, 256) 0 dilated_conv_512_tanh_s0[0][0]
dilated_conv_512_sigm_s0[0][0]
____________________________________________________________________________________________________
convolution1d_2 (Convolution1D) (None, 1152, 256) 65536 gated_activation_0_s0[0][0]
____________________________________________________________________________________________________
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convolution1d_4 (Convolution1D) (None, 1152, 256) 65536 gated_activation_1_s0[0][0]
____________________________________________________________________________________________________
convolution1d_6 (Convolution1D) (None, 1152, 256) 65536 gated_activation_2_s0[0][0]
____________________________________________________________________________________________________
convolution1d_8 (Convolution1D) (None, 1152, 256) 65536 gated_activation_3_s0[0][0]
____________________________________________________________________________________________________
convolution1d_10 (Convolution1D) (None, 1152, 256) 65536 gated_activation_4_s0[0][0]
____________________________________________________________________________________________________
convolution1d_12 (Convolution1D) (None, 1152, 256) 65536 gated_activation_5_s0[0][0]
____________________________________________________________________________________________________
convolution1d_14 (Convolution1D) (None, 1152, 256) 65536 gated_activation_6_s0[0][0]
____________________________________________________________________________________________________
convolution1d_16 (Convolution1D) (None, 1152, 256) 65536 gated_activation_7_s0[0][0]
____________________________________________________________________________________________________
convolution1d_18 (Convolution1D) (None, 1152, 256) 65536 gated_activation_8_s0[0][0]
____________________________________________________________________________________________________
convolution1d_20 (Convolution1D) (None, 1152, 256) 65536 gated_activation_9_s0[0][0]
____________________________________________________________________________________________________
merge_11 (Merge) (None, 1152, 256) 0 convolution1d_2[0][0]
convolution1d_4[0][0]
convolution1d_6[0][0]
convolution1d_8[0][0]
convolution1d_10[0][0]
convolution1d_12[0][0]
convolution1d_14[0][0]
convolution1d_16[0][0]
convolution1d_18[0][0]
convolution1d_20[0][0]
____________________________________________________________________________________________________
activation_1 (Activation) (None, 1152, 256) 0 merge_11[0][0]
____________________________________________________________________________________________________
convolution1d_21 (Convolution1D) (None, 1152, 256) 65792 activation_1[0][0]
____________________________________________________________________________________________________
activation_2 (Activation) (None, 1152, 256) 0 convolution1d_21[0][0]
____________________________________________________________________________________________________
convolution1d_22 (Convolution1D) (None, 1152, 256) 65792 activation_2[0][0]
____________________________________________________________________________________________________
output_softmax (Activation) (None, 1152, 256) 0 convolution1d_22[0][0]
====================================================================================================
Total params: 4,129,536
Trainable params: 4,129,536
Non-trainable params: 0

DeepMind tried to train with data sets including multiple speakers, and this
significantly improved the capacity to learn a shared representation of languages
and tones and thus receive results close to natural speech. You'll find an amazing
collection of examples of synthesized voice online (https://deepmind.com/blog/wavenet-gen
erative-model-raw-audio/), and it is interesting to note that the quality of audio improves
when WaveNet is conditioned on additional text that is transformed into a sequence
of linguistic and phonetic features in addition to audio waveforms. My favorite
examples are the ones where the same sentence is pronounced by the net with
different tones of voice. Of course, it is also fascinating to hear WaveNet create
piano music by itself. Check it out online!
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Summary
In this chapter, we discussed GANs. A GAN typically consists of two networks;
one is trained to forge synthetic data that looks authentic, and the second is trained
to discriminate authentic data against forged data. The two networks continuously
compete, and in doing so, they keep improving each other. We reviewed an open
source code, learning to forge MNIST and CIFAR-10 images that look authentic.
In addition, we discussed WaveNet, a deep generative network proposed by Google
DeepMind for teaching computers how to reproduce human voices and musical
instruments with impressive quality. WaveNet directly generates raw audio with a
parametric text-to-speech approach based on dilated convolutional networks.
Dilated convolutional networks are a special kind of ConvNets where convolution
filters have holes, allowing the receptive field to grow exponentially in depth and
therefore efficiently cover thousands of audio time-steps. DeepMind showed how it
is possible to use WaveNet to synthesize human voice and musical instruments, and
improved previous state-of-the-art. In the next chapter, we will discuss word
embeddings—a set of deep learning methodologies for detecting relations among
words and grouping together similar words. 
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Word Embeddings
Wikipedia defines word embedding as the collective name for a set of language
modeling and feature learning techniques in natural language processing (NLP)
where words or phrases from the vocabulary are mapped to vectors of real
numbers.

Word embeddings are a way to transform words in text to numerical vectors so that
they can be analyzed by standard machine learning algorithms that require vectors
as numerical input.

You have already learned about one type of word embedding called one-hot
encoding, in Chapter 1, Neural Networks Foundations. One-hot encoding is the
most basic embedding approach. To recap, one-hot encoding represents a word in
the text by a vector of the size of the vocabulary, where only the entry
corresponding to the word is a one and all the other entries are zero.

A major problem with one-hot encoding is that there is no way to represent the
similarity between words. In any given corpus, you would expect words such as
(cat, dog), (knife, spoon), and so on to have some similarity. Similarity between
vectors is computed using the dot product, which is the sum of element-wise
multiplication between vector elements. In the case of one-hot encoded vectors, the
dot product between any two words in a corpus is always zero.

To overcome the limitations of one-hot encoding, the NLP community has
borrowed techniques from information retrieval (IR) to vectorize text using the
document as the context. Notable techniques are TF-IDF (https://en.wikipedia.org/wiki/T
f%E2%80%93idf), latent semantic analysis (LSA) (https://en.wikipedia.org/wiki/Latent_sem
antic_analysis), and topic modeling (https://en.wikipedia.org/wiki/Topic_model). However,
these representations capture a slightly different document-centric idea of semantic
similarity.

Development of word embedding techniques began in earnest in 2000. Word
embedding differs from previous IR-based techniques in that they use words as
their context, which leads to a more natural form of semantic similarity from a
human understanding perspective. Today, word embedding is the technique of
choice for vectorizing text for all kinds of NLP tasks, such as text classification,
document clustering, part of speech tagging, named entity recognition, sentiment
analysis, and so on.

In this chapter, we will learn about two specific forms of word embedding, GloVe
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and word2vec, collectively known as distributed representations of words. These
embeddings have proven more effective and have been widely adopted in the deep
learning and NLP communities.

We will also learn different ways in which you can generate your own embeddings
in your Keras code, as well as how to use and fine-tune pre-trained word2vec and
GloVe models.

In this chapter, we will cover the following topics:

Building various distributional representations of words in context
Building models for leveraging embeddings to perform NLP tasks such as
sentence parsing and sentiment analysis
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Distributed representations
Distributed representations attempt to capture the meaning of a word by
considering its relations with other words in its context. The idea is captured in this
quote from J. R. Firth (for more information refer to the article: Document
Embedding with Paragraph Vectors, by Andrew M. Dai, Christopher Olah, and
Quoc V. Le, arXiv:1507.07998, 2015), a linguist who first proposed this idea:

You shall know a word by the company it keeps.

Consider the following pair of sentences:

Paris is the capital of France.
Berlin is the capital of Germany.

Even assuming you have no knowledge of world geography (or English for that
matter), you would still conclude without too much effort that the word pairs
(Paris, Berlin) and (France, Germany) were related in some way, and that
corresponding words in each pair were related in the same way to each other, that
is:

Paris : France :: Berlin : Germany

Thus, the aim of distributed representations is to find a general transformation
function φ to convert each word to its associated vector such that relations of the
following form hold true:

In other words, distributed representation aims to convert words to vectors where
the similarity between the vectors correlate with the semantic similarity between the
words.

The most well-known word embeddings are word2vec and GloVe, which we cover
in more detail in subsequent sections.
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word2vec
The word2vec group of models was created in 2013 by a team of researchers at
Google led by Tomas Mikolov. The models are unsupervised, taking as input a
large corpus of text and producing a vector space of words. The dimensionality of
the word2vec embedding space is usually lower than the dimensionality of the one-
hot embedding space, which is the size of the vocabulary. The embedding space is
also more dense compared to the sparse embedding of the one-hot embedding
space.

The two architectures for word2vec are as follows:

Continuous Bag Of Words (CBOW)
Skip-gram

In the CBOW architecture, the model predicts the current word given a window of
surrounding words. In addition, the order of the context words does not influence
the prediction (that is, the bag of words assumption). In the case of skip-gram
architecture, the model predicts the surrounding words given the center word.
According to the authors, CBOW is faster but skip-gram does a better job at
predicting infrequent words.

An interesting thing to note is that even though word2vec creates embeddings that
are used in deep learning NLP models, both flavors of word2vec that we will
discuss, which also happens to be the most successful and acknowledged recent
models, are shallow neural networks.
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The skip-gram word2vec
model
The skip-gram model is trained to predict the surrounding words given the current
word. To understand how the skip-gram word2vec model works, consider the
following example sentence:

I love green eggs and ham.

Assuming a window size of three, this sentence can be broken down into the
following sets of (context, word) pairs:

([I, green], love)
([love, eggs], green)
([green, and], eggs)
...

Since the skip-gram model predicts a context word given the center word, we can
convert the preceding dataset to one of (input, output) pairs. That is, given an input
word, we expect the skip-gram model to predict the output word:

(love, I), (love, green), (green, love), (green, eggs), (eggs, green), (eggs, and), ...

We can also generate additional negative samples by pairing each input word with
some random word in the vocabulary. For example:

(love, Sam), (love, zebra), (green, thing), ...

Finally, we generate positive and negative examples for our classifier:

((love, I), 1), ((love, green), 1), ..., ((love, Sam), 0), ((love, zebra), 0), ...

We can now train a classifier that takes in a word vector and a context vector and
learns to predict one or zero depending on whether it sees a positive or negative
sample. The deliverables from this trained network are the weights of the word
embedding layer (the gray box in the following figure):
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The skip-gram model can be built in Keras as follows. Assume that the vocabulary
size is set at 5000, the output embedding size is 300, and the window size is 1. A
window size of one means that the context for a word is the words immediately to
the left and right. We first take care of the imports and set our variables to their
initial values:

from keras.layers import Merge
from keras.layers.core import Dense, Reshape
from keras.layers.embeddings import Embedding
from keras.models import Sequential

vocab_size = 5000
embed_size = 300

We then create a sequential model for the word. The input to this model is the
word ID in the vocabulary. The embedding weights are initially set to small random
values. During training, the model will update these weights using backpropagation.
The next layer reshapes the input to the embedding size:

word_model = Sequential()
word_model.add(Embedding(vocab_size, embed_size,
                         embeddings_initializer="glorot_uniform",
                         input_length=1))
word_model.add(Reshape((embed_size, )))

The other model that we need is a sequential model for the context words. For
each of our skip-gram pairs, we have a single context word corresponding to the
target word, so this model is identical to the word model:

context_model = Sequential()
context_model.add(Embedding(vocab_size, embed_size,
                  embeddings_initializer="glorot_uniform",
                  input_length=1))
context_model.add(Reshape((embed_size,)))
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The outputs of the two models are each a vector of size (embed_size). These outputs
are merged into one using a dot product and fed into a dense layer, which has a
single output wrapped in a sigmoid activation layer. You have seen the sigmoid
activation function in Chapter 1, Neural Network Foundations. As you will recall, it
modulates the output so numbers higher than 0.5 tend rapidly to 1 and flatten out,
and numbers lower than 0.5 tend rapidly to 0 and also flatten out:

model = Sequential()
model.add(Merge([word_model, context_model], mode="dot"))
model.add(Dense(1, init="glorot_uniform", activation="sigmoid"))
model.compile(loss="mean_squared_error", optimizer="adam")

The loss function used is the mean_squared_error; the idea is to minimize the dot
product for positive examples and maximize it for negative examples. If you recall,
the dot product multiplies corresponding elements of two vectors and sums up the
result—this causes similar vectors to have higher dot products than dissimilar
vectors, since the former has more overlapping elements.

Keras provides a convenience function to extract skip-grams for a text that has
been converted to a list of word indices. Here is an example of using this function
to extract the first 10 of 56 skip-grams generated (both positive and negative).

We first declare the necessary imports and the text to be analyzed:

from keras.preprocessing.text import *
from keras.preprocessing.sequence import skipgrams

text = "I love green eggs and ham ."

The next step is to declare the tokenizer and run the text against it. This will
produce a list of word tokens:

tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])

The tokenizer creates a dictionary mapping each unique word to an integer ID and
makes it available in the word_index attribute. We extract this and create a two-way
lookup table:

word2id = tokenizer.word_index
id2word = {v:k for k, v in word2id.items()}

Finally, we convert our input list of words to a list of IDs and pass it to the
skipgrams function. We then print the first 10 of the 56 (pair, label) skip-gram tuples
generated:

wids = [word2id[w] for w in text_to_word_sequence(text)]
pairs, labels = skipgrams(wids, len(word2id))
print(len(pairs), len(labels))
for i in range(10):
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    print("({:s} ({:d}), {:s} ({:d})) -> {:d}".format(
          id2word[pairs[i][0]], pairs[i][0], 
          id2word[pairs[i][1]], pairs[i][1], 
          labels[i]))

The results from the code is shown below. Note that your results may be different
since the skip-gram method randomly samples the results from the pool of
possibilities for the positive examples. Additionally, the process of negative
sampling, used for generating the negative examples, consists of randomly
pairing up arbitrary tokens from the text. As the size of the input text increases, this
is more likely to pick up unrelated word pairs. In our example, since our text is very
short, there is a chance that it can end up generating positive examples as well.

(and (1), ham (3)) -> 0
(green (6), i (4)) -> 0
(love (2), i (4)) -> 1
(and (1), love (2)) -> 0
(love (2), eggs (5)) -> 0
(ham (3), ham (3)) -> 0
(green (6), and (1)) -> 1
(eggs (5), love (2)) -> 1
(i (4), ham (3)) -> 0
(and (1), green (6)) -> 1

The code for this example can be found in skipgram_example.py in the source code
download for the chapter.
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The CBOW word2vec
model
Let us now look at the CBOW word2vec model. Recall that the CBOW model
predicts the center word given the context words. Thus, in the first tuple in the
following example, the CBOW model needs to predict the output word love, given
the context words I and green:

([I, green], love) ([love, eggs], green) ([green, and], eggs) ...

Like the skip-gram model, the CBOW model is also a classifier that takes the
context words as input and predicts the target word. The architecture is somewhat
more straightforward than the skip-gram model. The input to the model is the word
IDs for the context words. These word IDs are fed into a common embedding
layer that is initialized with small random weights. Each word ID is transformed
into a vector of size (embed_size) by the embedding layer. Thus, each row of the
input context is transformed into a matrix of size (2*window_size, embed_size) by this
layer. This is then fed into a lambda layer, which computes an average of all the
embeddings. This average is then fed to a dense layer, which creates a dense vector
of size (vocab_size) for each row. The activation function on the dense layer is a
softmax, which reports the maximum value on the output vector as a probability.
The ID with the maximum probability corresponds to the target word.

The deliverable for the CBOW model is the weights from the embedding layer
shown in gray in the following figure:
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The corresponding Keras code for the model is shown as follows. Once again,
assume a vocabulary size of 5000, an embedding size of 300, and a context window
size of 1. Our first step is to set up all our imports and these values:

from keras.models import Sequential
from keras.layers.core import Dense, Lambda
from keras.layers.embeddings import Embedding
import keras.backend as K

vocab_size = 5000
embed_size = 300
window_size = 1

We then construct a sequential model, to which we add an embedding layer whose
weights are initialized with small random values. Note that the input_length of this
embedding layer is equal to the number of context words. So each context word is
fed into this layer and will update the weights jointly during backpropagation. The
output of this layer is a matrix of context word embeddings, which are averaged
into a single vector (per row of input) by the lambda layer. Finally, the dense layer
will convert each row into a dense vector of size (vocab_size). The target word is
the one whose ID has the maximum value in the dense output vector:

model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=embed_size, 
                    embeddings_initializer='glorot_uniform',
                    input_length=window_size*2))
model.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=  (embed_size,)))
model.add(Dense(vocab_size, kernel_initializer='glorot_uniform', activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer="adam")

The loss function used here is categorical_crossentropy, which is a common choice
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for cases where there are two or more (in our case, vocab_size) categories.

The source code for the example can be found in the keras_cbow.py file in the source
code download for the chapter.
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Extracting word2vec
embeddings from the model
As noted previously, even though both word2vec models can be reduced to a
classification problem, we are not really interested in the classification problem
itself. Rather, we are interested in the side effect of this classification process, that
is, the weight matrix that transforms a word from the vocabulary to its dense, low-
dimensional distributed representation.

There are many examples of how these distributed representations exhibit often
surprising syntactic and semantic information. For example, as shown in the
following figure from Tomas Mikolov's presentation at NIPS 2013 (for more
information refer to the article: Learning Representations of Text using Neural
Networks, by T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Q. Le,
and T. Strohmann, NIPS 2013), vectors connecting words that have similar
meanings but opposite genders are approximately parallel in the reduced 2D space,
and we can often get very intuitive results by doing arithmetic with the word
vectors. The presentation provides many other examples.

Intuitively, the training process imparts enough information to the internal encoding
to predict an output word that occurs in the context of an input word. So points
representing words shift in this space to be nearer to words with which it co-occurs.
This causes similar words to clump together. Words that co-occur with these similar
words also clump together in a similar way. As a result, vectors connecting points
representing semantically related points tend to exhibit these regularities in the
distributed representation.

Keras provides a way to extract weights from trained models. For the skip-gram
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example, the embedding weights can be extracted as follows:

merge_layer = model.layers[0]
word_model = merge_layer.layers[0]
word_embed_layer = word_model.layers[0]
weights = word_embed_layer.get_weights()[0]

Similarly, the embedding weights for the CBOW example can be extracted using
the following one-liner:

weights = model.layers[0].get_weights()[0]

In both cases, the shape of the weights matrix is vocab_size and embed_size. In order
to compute the distributed representation for a word in the vocabulary, you will
need to construct a one-hot vector by setting the position of the word index to one
in a zero vector of size (vocab_size) and multiply it with the matrix to get the
embedding vector of size (embed_size).

A visualization of word embeddings from work done by Christopher Olah (for
more information refer to the article: Document Embedding with Paragraph
Vectors, by Andrew M. Dai, Christopher Olah, and Quoc V. Le, arXiv:1507.07998,
2015) is shown as follows. This is a visualization of word embeddings reduced to
two dimensions and visualized with T-SNE. The words forming entity types were
chosen using WordNet synset clusters. As you can see, points corresponding to
similar entity types tend to cluster together:

The source code for the example can be found in keras_skipgram.py in the source
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code download.
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Using third-party
implementations of
word2vec
We have covered word2vec extensively over the past few sections. At this point,
you understand how the skip-gram and CBOW models work and how to build your
own implementation of these models using Keras. However, third-party
implementations of word2vec are readily available, and unless your use case is very
complex or different, it makes sense to just use one such implementation instead of
rolling your own.

The gensim library provides an implementation of word2vec. Even though this is a
book about Keras and not gensim, we include a discussion on this because Keras
does not provide any support for word2vec, and integrating the gensim
implementation into Keras code is very common practice.

Installation of gensim is fairly simple and described in detail on
the gensim installation page (https://radimrehurek.com/gensim/install.htm
l). 

The following code shows how to build a word2vec model using gensim and train it
with the text from the text8 corpus, available for download at: http://mattmahoney.net/dc
/text8.zip. The text8 corpus is a file containing about 17 million words derived from
Wikipedia text. Wikipedia text was cleaned to remove markup, punctuation, and
non-ASCII text, and the first 100 million characters of this cleaned text became the
text8 corpus. This corpus is commonly used as an example for word2vec because it
is quick to train and produces good results. First we set up the imports as usual:

from gensim.models import KeyedVectors
import logging
import os

We then read in the words from the text8 corpus, and split up the words into
sentences of 50 words each. The gensim library provides a built-in text8 handler
that does something similar. Since we want to illustrate how to generate a model
with any (preferably large) corpus that may or may not fit into memory, we will
show you how to generate these sentences using a Python generator.
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The Text8Sentences class will generate sentences of maxlen words each from the text8
file. In this case, we do ingest the entire file into memory, but when traversing
through directories of files, generators allows us to load parts of the data into
memory at a time, process them, and yield them to the caller:

class Text8Sentences(object):
  def __init__(self, fname, maxlen):
    self.fname = fname
    self.maxlen = maxlen
      
  def __iter__(self):
    with open(os.path.join(DATA_DIR, "text8"), "rb") as ftext:
      text = ftext.read().split(" ")
      sentences, words = [], []
      for word in text:
        if len(words) >= self.maxlen:
          yield words
          words = []
          words.append(word)
          yield words

We then set up the caller code. The gensim word2vec uses Python logging to report
on progress, so we first enable it. The next line declares an instance of the
Text8Sentences class, and the line after that trains the model with the sentences from
the dataset. We have chosen the size of the embedding vectors to be 300, and we
only consider words that appear a minimum of 30 times in the corpus. The default
window size is 5, so we will consider the words wi-5, wi-4, wi-3, wi-2, wi-1, wi+1,
wi+2, wi+3, wi+4, and wi+5 as the context for word wi. By default, the word2vec
model created is CBOW, but you can change that by setting sg=1 in the parameters:

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

DATA_DIR = "../data/"
sentences = Text8Sentences(os.path.join(DATA_DIR, "text8"), 50)
model = word2vec.Word2Vec(sentences, size=300, min_count=30)

The word2vec implementation will make two passes over the data, first to generate
a vocabulary and then to build the actual model. You can see its progress on the
console as it runs:
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Once the model is created, we should normalize the resulting vectors. According to
the documentation, this saves lots of memory. Once the model is trained, we can
optionally save it to disk:

model.init_sims(replace=True)
model.save("word2vec_gensim.bin")

The saved model can be brought back into memory using the following call:

model = Word2Vec.load("word2vec_gensim.bin")

We can now query the model to find all the words it knows about:

>>> model.vocab.keys()[0:10]
['homomorphism',
'woods',
'spiders',
'hanging',
'woody',
'localized',
'sprague',
'originality',
'alphabetic',
'hermann']

We can find the actual vector embedding for a given word:

>>> model["woman"]
 array([ -3.13099056e-01, -1.85702944e+00, 1.18816841e+00,
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 -1.86561719e-01, -2.23673001e-01, 1.06527400e+00,
 &mldr;
 4.31755871e-01, -2.90115297e-01, 1.00955181e-01,
 -5.17173052e-01, 7.22485244e-01, -1.30940580e+00], dtype=”float32”)

We can also find words that are most similar to a certain word:

>>> model.most_similar("woman")
 [('child', 0.7057571411132812),
 ('girl', 0.702182412147522),
 ('man', 0.6846336126327515),
 ('herself', 0.6292711496353149),
 ('lady', 0.6229539513587952),
 ('person', 0.6190367937088013),
 ('lover', 0.6062309741973877),
 ('baby', 0.5993420481681824),
 ('mother', 0.5954475402832031),
 ('daughter', 0.5871444940567017)]

We can provide hints for finding word similarity. For example, the following
command returns the top 10 words that are like woman and king but unlike man:

>>> model.most_similar(positive=['woman', 'king'], negative=['man'], topn=10)
 [('queen', 0.6237582564353943),
 ('prince', 0.5638638734817505),
 ('elizabeth', 0.5557916164398193),
 ('princess', 0.5456407070159912),
 ('throne', 0.5439794063568115),
 ('daughter', 0.5364126563072205),
 ('empress', 0.5354889631271362),
 ('isabella', 0.5233952403068542),
 ('regent', 0.520746111869812),
 ('matilda', 0.5167444944381714)]

We can also find similarities between individual words. To give a feel of how the
positions of the words in the embedding space correlates with their semantic
meanings, let us look at the following word pairs:

>>> model.similarity("girl", "woman")
 0.702182479574
 >>> model.similarity("girl", "man")
 0.574259909834
 >>> model.similarity("girl", "car")
 0.289332921793
 >>> model.similarity("bus", "car")
 0.483853497748

As you can see, girl and woman are more similar than girl and man, and car and bus
are more similar than girl and car. This agrees very nicely with our human intuition
about these words.

The source code for the example can be found in word2vec_gensim.py in the source
code download.
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Exploring GloVe
The global vectors for word representation, or GloVe, embeddings was created by
Jeffrey Pennington, Richard Socher, and Christopher Manning (for more
information refer to the article: GloVe: Global Vectors for Word Representation, by
J. Pennington, R. Socher, and C. Manning, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Pp. 1532–
1543, 2013). The authors describe GloVe as an unsupervised learning algorithm for
obtaining vector representations for words. Training is performed on aggregated
global word-word co-occurrence statistics from a corpus, and the resulting
representations showcase interesting linear substructures of the word vector space.

GloVe differs from word2vec in that word2vec is a predictive model while GloVe is
a count-based model. The first step is to construct a large matrix of (word, context)
pairs that co-occur in the training corpus. Each element of this matrix represents
how often a word represented by the row co-occurs in the context (usually a
sequence of words) represented by the column, as shown in the following figure:

The GloVe process converts the co-occurrence matrix into a pair of (word, feature)
and (feature, context) matrices. This process is known as matrix factorization and
is done using stochastic gradient descent (SGD), an iterative numerical method.
Rewriting in equation form:

Here, R is the original co-occurrence matrix. We first populate P and Q with
random values and attempt to reconstruct a matrix R' by multiplying them. The
difference between the reconstructed matrix R' and the original matrix R tells us
how much we need to change the values of P and Q to move R' closer to R, to
minimize the reconstruction error. This is repeated multiple times until the SGD
converges and the reconstruction error is below a specified threshold. At that point,

203



the (word, feature) matrix is the GloVe embedding. To speed up the process, SGD
is often used in parallel mode, as outlined in the HOGWILD! paper.

One thing to note is that predictive neural network based models such as word2vec
and count based models such as GloVe are very similar in intent. Both of them
build a vector space where the position of a word is influenced by its neighboring
words. Neural network models start with individual examples of word co-
occurrences and count based models start with aggregate co-occurrence statistics
between all words in the corpus. Several recent papers have demonstrated the
correlation between these two types of model.

We will not cover generation of GloVe vectors in more detail in this book. Even
though GloVe generally shows higher accuracy than word2vec and is faster to train
if you use parallelization, Python tooling is not as mature as for word2vec. The
only tool available to do this as of the time of writing is the GloVe-Python project (h
ttps://github.com/maciejkula/glove-python), which provides a toy implementation for GloVe
on Python.
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Using pre-trained
embeddings
In general, you will train your own word2vec or GloVe model from scratch only if
you have a very large amount of very specialized text. By far the most common
use case for Embeddings is to use pre-trained embeddings in some way in your
network. The three main ways in which you would use embeddings in your
network are as follows:

Learn embeddings from scratch
Fine-tune learned embeddings from pre-trained GloVe/word2vec models
Look up embeddings from pre-trained GloVe/word2vec models

In the first option, the embedding weights are initialized to small random values and
trained using backpropagation. You saw this in the examples for skip-gram and
CBOW models in Keras. This is the default mode when you use a Keras
Embedding layer in your network.

In the second option, you build a weight matrix from a pre-trained model and
initialize the weights of your embedding layer with this weight matrix. The network
will update these weights using backpropagation, but the model will converge faster
because of good starting weights.

The third option is to look up word embeddings from a pre-trained model, and
transform your input to embedded vectors. You can then train any machine
learning model (that is, not necessarily even a deep learning network) on the
transformed data. If the pre-trained model is trained on a similar domain as the
target domain, this usually works very well and is the least expensive option.

For general use with English language text, you can use Google's word2vec model
trained over 10 billion words from the Google news dataset. The vocabulary size is
about 3 million words and the dimensionality of the embedding is 300. The Google
news model (about 1.5 GB) can be downloaded from here: https://drive.google.com/file/d
/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing.

Similarly, a pre-trained model trained on 6 billion tokens from English Wikipedia
and the gigaword corpus can be downloaded from the GloVe site. The vocabulary
size is about 400,000 words and the download provides vectors with dimensions
50, 100, 200, and 300. The model size is about 822 MB. Here is the direct
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download URL (http://nlp.stanford.edu/data/glove.6B.zip) for this model. Larger models
based on the Common Crawl and Twitter are also available from the same location.

In the following sections, we will look at how to use these pre-trained models in the
three ways listed.
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Learn embeddings from
scratch
In this example, we will train a one-dimensional convolutional neural network
(CNN) to classify sentences as either positive or negative. You have already seen
how to classify images using two-dimensional CNNs in Chapter 3, Deep Learning
with ConvNets. Recall that CNNs exploit spatial structure in images by enforcing
local connectivity between neurons of adjacent layers.

Words in sentences exhibit linear structure in the same way as images exhibit spatial
structure. Traditional (non-deep learning) NLP approaches to language modeling
involve creating word n-grams (https://en.wikipedia.org/wiki/N-gram) to exploit this linear
structure inherent among words. One-dimensional CNNs do something similar,
learning convolution filters that operate on sentences a few words at a time, and
max pooling the results to create a vector that represents the most important ideas
in the sentence.

There is another class of neural network, called recurrent neural network (RNN),
which is specially designed to handle sequence data, including text, which is a
sequence of words. The processing in RNNs is different from that in a CNN. We
will learn about RNNs in a future chapter.

In our example network, the input text is converted to a sequence of word indices.
Note that we have used the natural language toolkit (NLTK) to parse the text
into sentences and words. We could also have used regular expressions to do this,
but the statistical models supplied by NLTK are more powerful at parsing than
regular expressions. If you are working with word embeddings, it is very likely that
you are also working with NLP, in which case you would have NLTK installed
already.

This link (http://www.nltk.org/install.html) has information to help
you install NLTK on your machine. You will also need to install
NLTK data, which is some trained corpora that comes standard
with NLTK. Installation instructions for NLTK data are available
here: http://www.nltk.org/data.html.

The sequence of word indices is fed into an array of embedding layers of a set size
(in our case, the number of words in the longest sentence). The embedding layer is
initialized by default to random values. The output of the embedding layer is
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connected to a 1D convolutional layer that convolves (in our example) word
trigrams in 256 different ways (essentially, it applies different learned linear
combinations of weights on the word embeddings). These features are then pooled
into a single pooled word by a global max pooling layer. This vector (256) is then
input to a dense layer, which outputs a vector (2). A softmax activation will return a
pair of probabilities, one corresponding to positive sentiment and another
corresponding to negative sentiment. The network is shown in the following figure:

Let us look at how to code this up using Keras. First we declare our imports. Right
after the constants, you will notice that I set the random.seed value to 42. This is
because we want consistent results between runs. Since the initializations of the
weight matrices are random, differences in initialization can lead to differences in
output, so this is a way to control that:

from keras.layers.core import Dense, Dropout, SpatialDropout1D
from keras.layers.convolutional import Conv1D
from keras.layers.embeddings import Embedding
from keras.layers.pooling import GlobalMaxPooling1D
from kera
s.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np

np.random.seed(42)

We declare our constants. For all subsequent examples in this chapter, we will
classify sentences from the UMICH SI650 sentiment classification competition on
Kaggle. The dataset has around 7,000 sentences, and is labeled 1 for positive and 0
for negative. The INPUT_FILE defines the path to this file of sentences and labels.
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The format of the file is a sentiment label (0 or 1) followed by a tab, followed by a
sentence.

The VOCAB_SIZE setting indicates that we will consider only the top 5,000 tokens in
the text. The EMBED_SIZE setting is the size of the embedding that will be generated
by the embedding layer in the network. NUM_FILTERS is the number of convolution
filters we will train for our convolution layer, and NUM_WORDS is the size of each filter,
that is, how many words we will convolve at a time. The BATCH_SIZE and
NUM_EPOCHS is the number of records to feed the network each time and how many
times we will run through the entire dataset during training:

INPUT_FILE = "../data/umich-sentiment-train.txt"
VOCAB_SIZE = 5000
EMBED_SIZE = 100
NUM_FILTERS = 256
NUM_WORDS = 3
BATCH_SIZE = 64
NUM_EPOCHS = 20

In the next block, we first read our input sentences and construct our vocabulary
out of the most frequent words in the corpus. We then use this vocabulary to
convert our input sentences into a list of word indices:

counter = collections.Counter()
fin = open(INPUT_FILE, "rb")
maxlen = 0
for line in fin:
    _, sent = line.strip().split("t")
    words = [x.lower() for x in   nltk.word_tokenize(sent)]
    if len(words) > maxlen:
        maxlen = len(words)
    for word in words:
        counter[word] += 1
fin.close()

word2index = collections.defaultdict(int)
for wid, word in enumerate(counter.most_common(VOCAB_SIZE)):
    word2index[word[0]] = wid + 1
vocab_size = len(word2index) + 1
index2word = {v:k for k, v in word2index.items()}

We pad each of our sentences to predetermined length maxlen (in this case the
number of words in the longest sentence in the training set). We also convert our
labels to categorical format using a Keras utility function. The last two steps are a
standard workflow for handling text input that we will see again and again:

xs, ys = [], []
fin = open(INPUT_FILE, "rb")
for line in fin:
    label, sent = line.strip().split("t")
    ys.append(int(label))
    words = [x.lower() for x in nltk.word_tokenize(sent)]
    wids = [word2index[word] for word in words]
    xs.append(wids)
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fin.close()
X = pad_sequences(xs, maxlen=maxlen)
Y = np_utils.to_categorical(ys)

Finally, we split up our data into a 70/30 training and test set. The data is now in a
form ready to be fed into the network:

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3, random_state=42)

We define the network that we described earlier in this section:

model = Sequential()
model.add(Embedding(vocab_size, EMBED_SIZE, input_length=maxlen)
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(Conv1D(filters=NUM_FILTERS, kernel_size=NUM_WORDS,
activation="relu"))
model.add(GlobalMaxPooling1D())
model.add(Dense(2, activation="softmax"))

We then compile the model. Since our target is binary (positive or negative) we
choose categorical_crossentropy as our loss function. For the optimizer, we choose
adam. We then train the model using our training set, using a batch size of 64 and
training for 20 epochs:

model.compile(loss="categorical_crossentropy", optimizer="adam",
              metrics=["accuracy"])
history = model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE,
                    epochs=NUM_EPOCHS,
                    validation_data=(Xtest, Ytest))

The output from the code looks as follows:
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As you can see, the network gives us 98.6% accuracy on the test set.

The source code for this example can be found in learn_embedding_from_scratch.py in
the source code download for the chapter.
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Fine-tuning learned
embeddings from word2vec
In this example, we will use the same network as the one we used to learn our
embeddings from scratch. In terms of code, the only major difference is an extra
block of code to load the word2vec model and build up the weight matrix for the
embedding layer.

As always, we start with the imports and set up a random seed for repeatability. In
addition to the imports we have seen previously, there is an additional one to import
the word2vec model from gensim:

from gensim.models import KeyedVectors
from keras.layers.core import Dense, Dropout, SpatialDropout1D
from keras.layers.convolutional import Conv1D
from keras.layers.embeddings import Embedding
from keras.layers.pooling import GlobalMaxPooling1D
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np

np.random.seed(42)

Next up is setting up the constants. The only difference here is that we reduced the
NUM_EPOCHS setting from 20 to 10. Recall that initializing the matrix with values from a
pre-trained model tends to set them to good values that converge faster:

INPUT_FILE = "../data/umich-sentiment-train.txt"
WORD2VEC_MODEL = "../data/GoogleNews-vectors-negative300.bin.gz"
VOCAB_SIZE = 5000
EMBED_SIZE = 300
NUM_FILTERS = 256
NUM_WORDS = 3
BATCH_SIZE = 64
NUM_EPOCHS = 10

The next block extracts the words from the dataset and creates a vocabulary of the
most frequent terms, then parses the dataset again to create a list of padded word
lists. It also converts the labels to categorical format. Finally, it splits the data into a
training and a test set. This block is identical to the previous example and has been
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explained in depth there:

counter = collections.Counter()
fin = open(INPUT_FILE, "rb")
maxlen = 0
for line in fin:
   _, sent = line.strip().split("t")
   words = [x.lower() for x in nltk.word_tokenize(sent)]
   if len(words) > maxlen:
       maxlen = len(words)
   for word in words:
       counter[word] += 1
fin.close()

word2index = collections.defaultdict(int)
for wid, word in enumerate(counter.most_common(VOCAB_SIZE)):
    word2index[word[0]] = wid + 1
vocab_sz = len(word2index) + 1
index2word = {v:k for k, v in word2index.items()}

xs, ys = [], []
fin = open(INPUT_FILE, "rb")
for line in fin:
    label, sent = line.strip().split("t")
    ys.append(int(label))
    words = [x.lower() for x in nltk.word_tokenize(sent)]
    wids = [word2index[word] for word in words]
    xs.append(wids)
fin.close()
X = pad_sequences(xs, maxlen=maxlen)
Y = np_utils.to_categorical(ys)

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3,
     random_state=42)

The next block loads up the word2vec model from a pre-trained model. This model
is trained with about 10 billion words of Google News articles and has a vocabulary
size of 3 million. We load it and look up embedding vectors from it for words in our
vocabulary, and write out the embedding vector into our weight matrix
embedding_weights. Rows of this weight matrix correspond to words in the
vocabulary, and columns of each row constitute the embedding vector for the
word.

The dimensions of the embedding_weights matrix is vocab_sz and EMBED_SIZE. The
vocab_sz is one more than the maximum number of unique terms in the vocabulary,
the additional pseudo-token _UNK_ representing words that are not seen in the
vocabulary.

Note that it is possible that some words in our vocabulary may not be there in the
Google News word2vec model, so when we encounter such words, the embedding
vectors for them remain at the default value of all zeros:

# load word2vec model
word2vec = Word2Vec.load_word2vec_format(WORD2VEC_MODEL, binary=True)
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embedding_weights = np.zeros((vocab_sz, EMBED_SIZE))
for word, index in word2index.items():
    try:
        embedding_weights[index, :] = word2vec[word]
    except KeyError:
        pass

We define our network. The difference in this block from our previous example is
that we initialize the weights of the embedding layer with the embedding_weights
matrix we built in the previous block:

model = Sequential()
model.add(Embedding(vocab_sz, EMBED_SIZE, input_length=maxlen,
          weights=[embedding_weights]))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(Conv1D(filters=NUM_FILTERS, kernel_size=NUM_WORDS,
                        activation="relu"))
model.add(GlobalMaxPooling1D())
model.add(Dense(2, activation="softmax"))

We then compile our model with the categorical cross-entropy loss function and the
Adam optimizer, and train the network with batch size 64 and for 10 epochs, then
evaluate the trained model:

model.compile(optimizer="adam", loss="categorical_crossentropy",
              metrics=["accuracy"])
history = model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE,
                    epochs=NUM_EPOCHS,
                    validation_data=(Xtest, Ytest))

score = model.evaluate(Xtest, Ytest, verbose=1)
print("Test score: {:.3f}, accuracy: {:.3f}".format(score[0], score[1]))

Output from running the code is shown as follows:

((4960, 42), (2126, 42), (4960, 2), (2126, 2))
 Train on 4960 samples, validate on 2126 samples
 Epoch 1/10
 4960/4960 [==============================] - 7s - loss: 0.1766 - acc: 0.9369 - val_loss: 0.0397 - val_acc: 0.9854
 Epoch 2/10
 4960/4960 [==============================] - 7s - loss: 0.0725 - acc: 0.9706 - val_loss: 0.0346 - val_acc: 0.9887
 Epoch 3/10
 4960/4960 [==============================] - 7s - loss: 0.0553 - acc: 0.9784 - val_loss: 0.0210 - val_acc: 0.9915
 Epoch 4/10
 4960/4960 [==============================] - 7s - loss: 0.0519 - acc: 0.9790 - val_loss: 0.0241 - val_acc: 0.9934
 Epoch 5/10
 4960/4960 [==============================] - 7s - loss: 0.0576 - acc: 0.9746 - val_loss: 0.0219 - val_acc: 0.9929
 Epoch 6/10
 4960/4960 [==============================] - 7s - loss: 0.0515 - acc: 0.9764 - val_loss: 0.0185 - val_acc: 0.9929
 Epoch 7/10
 4960/4960 [==============================] - 7s - loss: 0.0528 - acc: 0.9790 - val_loss: 0.0204 - val_acc: 0.9920
 Epoch 8/10
 4960/4960 [==============================] - 7s - loss: 0.0373 - acc: 0.9849 - val_loss: 0.0221 - val_acc: 0.9934
 Epoch 9/10
 4960/4960 [==============================] - 7s - loss: 0.0360 - acc: 0.9845 - val_loss: 0.0194 - val_acc: 0.9929
 Epoch 10/10
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 4960/4960 [==============================] - 7s - loss: 0.0389 - acc: 0.9853 - val_loss: 0.0254 - val_acc: 0.9915
 2126/2126 [==============================] - 1s
 Test score: 0.025, accuracy: 0.993

The model gives us an accuracy of 99.3% on the test set after 10 epochs of
training. This is an improvement over the previous example, where we got an
accuracy of 98.6% accuracy after 20 epochs.

The source code for this example can be found in  finetune_word2vec_embeddings.py in
the source code download for the chapter.
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Fine-tune learned
embeddings from GloVe
Fine tuning using pre-trained GloVe embeddings is very similar to fine tuning using
pre-trained word2vec embeddings. In fact, all of the code, except for the block that
builds the weight matrix for the embedding layer, is identical. Since we have already
seen this code twice, I will just focus on the block of code that builds the weight
matrix from the GloVe embeddings.

GloVe embeddings come in various flavors. We use the model pre-trained on 6
billion tokens from the English Wikipedia and the gigaword corpus. The vocabulary
size for the model is about 400,000, and the download provides vectors of
dimensions 50, 100, 200, and 300. We will use embeddings from the 300
dimensional model.

The only thing we need to change in the code for the previous example is to replace
the block that instantiated a word2vec model and loaded the embedding matrix
using the following block of code. If we use a model with vector size other than
300, then we also need to update EMBED_SIZE.

The vectors are provided in space-delimited text format, so the first step is to read
the code into a dictionary, word2emb. This is analogous to the line instantiating the
Word2Vec model in our previous example:

GLOVE_MODEL = "../data/glove.6B.300d.txt"
word2emb = {}
fglove = open(GLOVE_MODEL, "rb")
for line in fglove:
    cols = line.strip().split()
    word = cols[0]
    embedding = np.array(cols[1:], dtype="float32")
    word2emb[word] = embedding
fglove.close()

We then instantiate an embedding weight matrix of size (vocab_sz and EMBED_SIZE)
and populate the vectors from the word2emb dictionary. Vectors for words that are
found in the vocabulary but not in the GloVe model remain set to all zeros:

embedding_weights = np.zeros((vocab_sz, EMBED_SIZE))
for word, index in word2index.items():
    try:
        embedding_weights[index, :] = word2emb[word]
    except KeyError:
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        pass

The full code for this program can be found in finetune_glove_embeddings.py in the
book's code repository on GitHub. The output of the run is shown as follows:

This gives us 99.1% accuracy in 10 epochs, which is almost as good as the results
we got from fine-tuning the network using word2vec embedding_weights.

The source code for this example can be found in finetune_glove_embeddings.py in
the source code download for this chapter.
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Look up embeddings
Our final strategy is to look up embeddings from pre-trained networks. The
simplest way to do this with the current examples is to just set the trainable
parameter of the embedding layer to False. This ensures that backpropagation will
not update the weights on the embedding layer:

model.add(Embedding(vocab_sz, EMBED_SIZE, input_length=maxlen,
                     weights=[embedding_weights],
                     trainable=False))
model.add(SpatialDropout1D(Dropout(0.2)))

Setting this value with the word2vec and GloVe examples gave us accuracies of
98.7% and 98.9% respectively after 10 epochs of training.

However, in general, this is not how you would use pre-trained embeddings in your
code. Typically, it involves preprocessing your dataset to create word vectors by
looking up words in one of the pre-trained models, and then using this data to train
some other model. The second model would not contain an Embedding layer, and
may not even be a deep learning network.

The following example describes a dense network that takes as its input a vector of
size 100, representing a sentence, and outputs a 1 or 0 for positive or negative
sentiment. Our dataset is still the one from the UMICH S1650 sentiment
classification competition with around 7,000 sentences.

As previously, large parts of the code are repeated, so we only explain the parts that
are new or otherwise need explanation.
We begin with the imports, set the random seed for repeatability, and set some
constant values. In order to create the 100-dimensional vectors for each sentence,
we add up the GloVe 100-dimensional vectors for the words in the sentence, so we
choose the glove.6B.100d.txt file:

from keras.layers.core import Dense, Dropout, SpatialDropout1D
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np

np.random.seed(42)
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INPUT_FILE = "../data/umich-sentiment-train.txt"
GLOVE_MODEL = "../data/glove.6B.100d.txt"
VOCAB_SIZE = 5000
EMBED_SIZE = 100
BATCH_SIZE = 64
NUM_EPOCHS = 10

The next block reads the sentences and creates a word frequency table. From this,
the most common 5,000 tokens are selected and lookup tables (from word to word
index and back) are created. In addition, we create a pseudo-token _UNK_ for tokens
that do not exist in the vocabulary. Using these lookup tables, we convert each
sentence to a sequence of word IDs, padding these sequences so that all sequences
are of the same length (the maximum number of words in a sentence in the training
set). We also convert the labels to categorical format:

counter = collections.Counter()
fin = open(INPUT_FILE, "rb")
maxlen = 0
for line in fin:
    _, sent = line.strip().split("t")
    words = [x.lower() for x in nltk.word_tokenize(sent)]
    if len(words) > maxlen:
        maxlen = len(words)
    for word in words:
        counter[word] += 1
fin.close()

word2index = collections.defaultdict(int)
for wid, word in enumerate(counter.most_common(VOCAB_SIZE)):
     word2index[word[0]] = wid + 1
vocab_sz = len(word2index) + 1
index2word = {v:k for k, v in word2index.items()}
index2word[0] = "_UNK_"

ws, ys = [], []
fin = open(INPUT_FILE, "rb")
for line in fin:
    label, sent = line.strip().split("t")
    ys.append(int(label))
    words = [x.lower() for x in nltk.word_tokenize(sent)]
    wids = [word2index[word] for word in words]
    ws.append(wids)
fin.close()
W = pad_sequences(ws, maxlen=maxlen)
Y = np_utils.to_categorical(ys)

We load the GloVe vectors into a dictionary. If we wanted to use word2vec here, all
we have to do is replace this block with a gensim Word2Vec.load_word2vec_format()
call and replace the following block to look up the word2vec model instead of the
word2emb dictionary:

word2emb = collections.defaultdict(int)
fglove = open(GLOVE_MODEL, "rb")
for line in fglove:
    cols = line.strip().split()
    word = cols[0]
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    embedding = np.array(cols[1:], dtype="float32")
    word2emb[word] = embedding
fglove.close()

The next block looks up the words for each sentence from the word ID matrix W
and populates a matrix E with the corresponding embedding vector. These
embedding vectors are then added to create a sentence vector, which is written
back into the X matrix. The output of this code block is the matrix X of size
(num_records and EMBED_SIZE):

X = np.zeros((W.shape[0], EMBED_SIZE))
for i in range(W.shape[0]):
    E = np.zeros((EMBED_SIZE, maxlen))
    words = [index2word[wid] for wid in W[i].tolist()]
    for j in range(maxlen):
         E[:, j] = word2emb[words[j]]
    X[i, :] = np.sum(E, axis=1)

We have now preprocessed our data using the pre-trained model and are ready to
use it to train and evaluate our final model. Let us split the data into 70/30
training/test as usual:

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3, random_state=42)

The network we will train for doing the sentiment analysis task is a simple dense
network. We compile it with a categorical cross-entropy loss function and the Adam
optimizer, and train it with the sentence vectors that we built out of the pre-trained
embeddings. Finally, we evaluate the model on the 30% test set:

model = Sequential()
model.add(Dense(32, input_dim=100, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(2, activation="softmax"))

model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
history = model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE,
                    epochs=NUM_EPOCHS,
                    validation_data=(Xtest, Ytest))

score = model.evaluate(Xtest, Ytest, verbose=1)
print("Test score: {:.3f}, accuracy: {:.3f}".format(score[0], score[1]))

The output for the code using GloVe embeddings is shown as follows:
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The dense network gives us 96.5% accuracy on the test set after 10 epochs of
training when preprocessed with the 100-dimensional GloVe embeddings. With
preprocessed with the word2vec embeddings (300-dimensional fixed) the network
gives us 98.5% on the test set.

The source code for this example can be found in transfer_glove_embeddings.py (for
the GloVe example) and transfer_word2vec_embeddings.py (for the word2vec example)
in the source code download for the chapter.
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Summary
In this chapter, we learned how to transform words in text into vector embeddings
that retain the distributional semantics of the word. We also now have an intuition
of why word embeddings exhibit this kind of behavior and why word embeddings
are useful for working with deep learning models for text data.

We then looked at two popular word embedding schemes, word2vec and GloVe,
and understood how these models work. We also looked at using gensim to train
our own word2vec model from data.

Finally, we learned about different ways of using embeddings in our network. The
first was to learn embeddings from scratch as part of training our network. The
second was to import embedding weights from pre-trained word2vec and GloVe
models into our networks and fine-tune them as we train the network. The third
was to use these pre-trained weights as is in our downstream applications.

In the next chapter, we will learn about recurrent neural networks, a class of
network that is optimized for handling sequence data such as text.
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Recurrent Neural Network
— RNN
In Chapter 3, Deep Learning with ConvNets, we learned about convolutional
neural networks (CNN) and saw how they exploit the spatial geometry of their
input. For example, CNNs apply convolution and pooling operations in one
dimension for audio and text data along the time dimension, in two dimensions for
images along the (height x width) dimensions and in three dimensions, for videos
along the (height x width x time) dimensions.

In this chapter, we will learn about recurrent neural networks (RNN), a class of
neural networks that exploit the sequential nature of their input. Such inputs could
be text, speech, time series, and anything else where the occurrence of an element
in the sequence is dependent on the elements that appeared before it. For example,
the next word in the sentence the dog... is more likely to be barks than car,
therefore, given such a sequence, an RNN is more likely to predict barks than car.

An RNN can be thought of as a graph of RNN cells, where each cell performs the
same operation on every element in the sequence. RNNs are very flexible and have
been used to solve problems such as speech recognition, language modeling,
machine translation, sentiment analysis, and image captioning, to name a few.
RNNs can be adapted to different types of problems by rearranging the way the
cells are arranged in the graph. We will see some examples of these configurations
and how they are used to solve specific problems.

We will also learn about a major limitation of the SimpleRNN cell, and how two
variants of the SimpleRNN cell—long short term memory (LSTM) and gated
recurrent unit (GRU)—overcome this limitation. Both LSTM and GRU are drop-
in replacements for the SimpleRNN cell, so just replacing the RNN cell with one of
these variants can often result in a major performance improvement in your
network. While LSTM and GRU are not the only variants, it has been shown
empirically (for more information refer to the articles: An Empirical Exploration of
Recurrent Network Architectures, by R. Jozefowicz, W. Zaremba, and I.
Sutskever, JMLR, 2015 and LSTM: A Search Space Odyssey, by K. Greff,
arXiv:1503.04069, 2015) that they are the best choices for most sequence
problems.

Finally, we will also learn about some tips to improve the performance of our
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RNNs and when and how to apply them.

In this chapter, we will cover the following topics:

SimpleRNN cell
Basic RNN implementation in Keras in generating text
RNN topologies
LSTM, GRU, and other RNN variants
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SimpleRNN cells
Traditional multilayer perceptron neural networks make the assumption that all
inputs are independent of each other. This assumption breaks down in the case of
sequence data. You have already seen the example in the previous section where
the first two words in the sentence affect the third. The same idea is true of speech
—if we are having a conversation in a noisy room, I can make reasonable guesses
about a word I may not have understood based on the words I have heard so far.
Time series data, such as stock prices or weather, also exhibit a dependence on past
data, called the secular trend.

RNN cells incorporate this dependence by having a hidden state, or memory, that
holds the essence of what has been seen so far. The value of the hidden state at
any point in time is a function of the value of the hidden state at the previous time
step and the value of the input at the current time step, that is:

ht and ht-1 are the values of the hidden states at the time steps t and t-1
respectively, and xt is the value of the input at time t. Notice that the equation is
recursive, that is, ht-1 can be represented in terms of ht-2 and xt-1, and so on, until
the beginning of the sequence. This is how RNNs encode and incorporate
information from arbitrarily long sequences.

We can also represent the RNN cell graphically as shown in the following diagram
on the left. At time t, the cell has an input xt and an output yt. Part of the output yt
(the hidden state ht) is fed back into the cell for use at a later time step t+1. Just as
a traditional neural network's parameters are contained in its weight matrix, the
RNN's parameters are defined by three weight matrices U, V, and W,
corresponding to the input, output, and hidden state respectively:
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Another way to look at an RNN to unroll it, as shown in the preceding diagram on
the right. Unrolling means that we draw the network out for the complete
sequence. The network shown here is a three-layer RNN, suitable for processing
three element sequences. Notice that the weight matrices U, V, and W are shared
across the steps. This is because we are applying the same operation on different
inputs at each time step. Being able to share these weight vectors across all the time
steps greatly reduces the number of parameters that the RNN needs to learn.

We can also describe the computations within an RNN in terms of equations. The
internal state of the RNN at a time t is given by the value of the hidden vector ht,
which is the sum of the product of the weight matrix W and the hidden state ht-1 at
time t-1 and the product of the weight matrix U and the input xt at time t, passed
through the tanh nonlinearity. The choice of tanh over other nonlinearities has to
do with its second derivative decaying very slowly to zero. This keeps the gradients
in the linear region of the activation function and helps combat the vanishing
gradient problem. We will learn more about the vanishing gradient problem later in
this chapter.

The output vector yt at time t is the product of the weight matrix V and the hidden
state ht, with softmax applied to the product so the resulting vector is a set of
output probabilities:

Keras provides the SimpleRNN (for more information refer to: https://keras.io/layers/re
current/) recurrent layer that incorporates all the logic we have seen so far, as well as
the more advanced variants such as LSTM and GRU that we will see later in this
chapter, so it is not strictly necessary to understand how they work in order to start
building with them. However, an understanding of the structure and equations is
helpful when you need to compose your own RNN to solve a given problem.
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SimpleRNN with Keras —
generating text
RNNs have been used extensively by the natural language processing (NLP)
community for various applications. One such application is building language
models. A language model allows us to predict the probability of a word in a text
given the previous words. Language models are important for various higher level
tasks such as machine translation, spelling correction, and so on.

A side effect of the ability to predict the next word given previous words is a
generative model that allows us to generate text by sampling from the output
probabilities. In language modeling, our input is typically a sequence of words and
the output is a sequence of predicted words. The training data used is existing
unlabeled text, where we set the label yt at time t to be the input xt+1 at time t+1.

For our first example of using Keras for building RNNs, we will train a character
based language model on the text of Alice in Wonderland to predict the next
character given 10 previous characters. We have chosen to build a character-based
model here because it has a smaller vocabulary and trains quicker. The idea is the
same as using a word-based language model, except we use characters instead of
words. We will then use the trained model to generate some text in the same style.

First we import the necessary modules:

from __future__ import print_function
from keras.layers import Dense, Activation
from keras.layers.recurrent import SimpleRNN
from keras.models import Sequential
from keras.utils.visualize_util import plot
import numpy as np

We read our input text from the text of Alice in Wonderland on the Project
Gutenberg website (http://www.gutenberg.org/files/11/11-0.txt). The file contains line
breaks and non-ASCII characters, so we do some preliminary cleanup and write
out the contents into a variable called text:

fin = open("../data/alice_in_wonderland.txt", 'rb')
lines = []
for line in fin:
    line = line.strip().lower()
    line = line.decode("ascii", "ignore")
    if len(line) == 0:
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        continue
    lines.append(line)
fin.close()
text = " ".join(lines)

Since we are building a character-level RNN, our vocabulary is the set of
characters that occur in the text. There are 42 of them in our case. Since we will be
dealing with the indexes to these characters rather than the characters themselves,
the following code snippet creates the necessary lookup tables:

chars = set([c for c in text])
nb_chars = len(chars)
char2index = dict((c, i) for i, c in enumerate(chars))
index2char = dict((i, c) for i, c in enumerate(chars))

The next step is to create the input and label texts. We do this by stepping through
the text by a number of characters given by the STEP variable (1 in our case) and
then extracting a span of text whose size is determined by the SEQLEN variable (10 in
our case). The next character after the span is our label character:

SEQLEN = 10
STEP = 1

input_chars = []
label_chars = []
for i in range(0, len(text) - SEQLEN, STEP):
    input_chars.append(text[i:i + SEQLEN])
    label_chars.append(text[i + SEQLEN])

Using the preceding code, the input and label texts for the text it turned into a pig
would look like this:

it turned -> i
 t turned i -> n
 turned in -> t
turned int -> o
urned into ->
rned into -> a
ned into a ->
ed into a -> p
d into a p -> i
 into a pi -> g

The next step is to vectorize these input and label texts. Each row of the input to
the RNN corresponds to one of the input texts shown previously. There are SEQLEN
characters in this input, and since our vocabulary size is given by nb_chars, we
represent each input character as a one-hot encoded vector of size (nb_chars). Thus
each input row is a tensor of size (SEQLEN and nb_chars). Our output label is a single
character, so similar to the way we represent each character of our input, it is
represented as a one-hot vector of size (nb_chars). Thus, the shape of each label is
nb_chars:
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X = np.zeros((len(input_chars), SEQLEN, nb_chars), dtype=np.bool)
y = np.zeros((len(input_chars), nb_chars), dtype=np.bool)
for i, input_char in enumerate(input_chars):
    for j, ch in enumerate(input_char):
        X[i, j, char2index[ch]] = 1
    y[i, char2index[label_chars[i]]] = 1

Finally, we are ready to build our model. We define the RNN's output dimension to
have a size of 128. This is a hyper-parameter that needs to be determined by
experimentation. In general, if we choose too small a size, then the model does not
have sufficient capacity for generating good text, and you will see long runs of
repeating characters or runs of repeating word groups. On the other hand, if the
value chosen is too large, the model has too many parameters and needs a lot more
data to train effectively. We want to return a single character as output, not a
sequence of characters, so return_sequences=False. We have already seen that the
input to the RNN is of shape (SEQLEN and nb_chars). In addition, we set unroll=True
because it improves performance on the TensorFlow backend.

The RNN is connected to a dense (fully connected) layer. The dense layer has
(nb_char) units, which emits scores for each of the characters in the vocabulary. The
activation on the dense layer is a softmax, which normalizes the scores to
probabilities. The character with the highest probability is chosen as the prediction.
We compile the model with the categorical cross-entropy loss function, a good loss
function for categorical outputs, and the RMSprop optimizer:

HIDDEN_SIZE = 128
BATCH_SIZE = 128
NUM_ITERATIONS = 25
NUM_EPOCHS_PER_ITERATION = 1
NUM_PREDS_PER_EPOCH = 100

model = Sequential()
model.add(SimpleRNN(HIDDEN_SIZE, return_sequences=False,
    input_shape=(SEQLEN, nb_chars),
    unroll=True))
model.add(Dense(nb_chars))
model.add(Activation("softmax"))

model.compile(loss="categorical_crossentropy", optimizer="rmsprop")

Our training approach is a little different from what we have seen so far. So far our
approach has been to train a model for a fixed number of epochs, then evaluate it
against a portion of held-out test data. Since we don't have any labeled data here,
we train the model for an epoch (NUM_EPOCHS_PER_ITERATION=1) then test it. We
continue training like this for 25 (NUM_ITERATIONS=25) iterations, stopping once we see
intelligible output. So effectively, we are training for NUM_ITERATIONS epochs and
testing the model after each epoch. 

Our test consists of generating a character from the model given a random input,
then dropping the first character from the input and appending the predicted
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character from our previous run, and generating another character from the model.
We continue this 100 times (NUM_PREDS_PER_EPOCH=100) and generate and print the
resulting string. The string gives us an indication of the quality of the model:

for iteration in range(NUM_ITERATIONS):
    print("=" * 50)
    print("Iteration #: %d" % (iteration))
    model.fit(X, y, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS_PER_ITERATION)

    test_idx = np.random.randint(len(input_chars))
    test_chars = input_chars[test_idx]
    print("Generating from seed: %s" % (test_chars))
    print(test_chars, end="")
    for i in range(NUM_PREDS_PER_EPOCH):
        Xtest = np.zeros((1, SEQLEN, nb_chars))
        for i, ch in enumerate(test_chars):
            Xtest[0, i, char2index[ch]] = 1
        pred = model.predict(Xtest, verbose=0)[0]
        ypred = index2char[np.argmax(pred)]
        print(ypred, end="")
        # move forward with test_chars + ypred
        test_chars = test_chars[1:] + ypred
print()

The output of this run is shown as follows. As you can see, the model starts out
predicting gibberish, but by the end of the 25th epoch, it has learned to spell
reasonably well, although it has trouble expressing coherent thoughts. The amazing
thing about this model is that it is character-based and has no knowledge of words,
yet it learns to spell words that look like they might have come from the original
text:

Generating the next character or next word of text is not the only thing you can do
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with this sort of model. This kind of model has been successfully used to make
stock predictions (for more information refer to the article: Financial Market Time
Series Prediction with Recurrent Neural Networks, by A. Bernal, S. Fok, and R.
Pidaparthi, 2012) and generate classical music (for more information refer to the
article: DeepBach: A Steerable Model for Bach Chorales Generation, by G.
Hadjeres and F. Pachet, arXiv:1612.01010, 2016), to name a few interesting
applications. Andrej Karpathy covers a few other fun examples, such as generating
fake Wikipedia pages, algebraic geometry proofs, and Linux source code in his blog
post at: The Unreasonable Effectiveness of Recurrent Neural Networks at http://karpa
thy.github.io/2015/05/21/rnn-effectiveness/.

The source code for this example is available in alice_chargen_rnn.py in the code
download for the chapter. The data is available from Project Gutenberg.
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RNN topologies
The APIs for MLP and CNN architectures are limited. Both architectures accept a
fixed-size tensor as input and produce a fixed-size tensor as output; and they
perform the transformation from input to output in a fixed number of steps given
by the number of layers in the model. RNNs don't have this limitation—you can
have sequences in the input, the output, or both. This means that RNNs can be
arranged in many ways to solve specific problems.

As we have learned, RNNs combine the input vector with the previous state vector
to produce a new state vector. This can be thought of as similar to running a
program with some inputs and some internal variables. Thus RNNs can be thought
of as essentially describing computer programs. In fact, it has been shown that
RNNs are turing complete (for more information refer to the article: On the
Computational Power of Neural Nets, by H. T. Siegelmann and E. D. Sontag,
proceedings of the fifth annual workshop on computational learning theory, ACM,
1992.) in the sense that given the proper weights, they can simulate arbitrary
programs.

This property of being able to work with sequences gives rise to a number of
common topologies, some of which we'll discuss, as follows:

All these different topologies derive from the same basic structure shown in the
preceding diagram. In this basic topology, all input sequences are of the same length
and an output is produced at each time step. We have already seen an example of
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this with our character level RNN for generating words in Alice in Wonderland.

Another example of a many to many RNN could be a machine translation network
shown as (b), part of a general family of networks called sequence-to-sequence
(for more information refer to: Grammar as a Foreign Language, by O. Vinyals,
Advances in Neural Information Processing Systems, 2015). These take in a
sequence and produces another sequence. In the case of machine translation, the
input could be a sequence of English words in a sentence and the output could be
the words in a translated Spanish sentence. In the case of a model that uses
sequence-to-sequence to do part-of-speech (POS) tagging, the input could be the
words in a sentence and the output could be the corresponding POS tags. It differs
from the previous topology in that at certain time steps there is no input and at
others there is no output. We will see an example of such a network later in this
chapter.

Other variants are the one-to-many network shown as (c), an example of which
could be an image captioning network (for more information refer to the article:
Deep Visual-Semantic Alignments for Generating Image Descriptions, by A.
Karpathy, and F. Li, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015.), where the input is an image and the output a sequence
of words.

Similarly, an example of a many-to-one network as shown in (d) could be a
network that does sentiment analysis of sentences, where the input is a sequence of
words and the output is a positive or negative sentiment (for more information refer
to the article: Recursive Deep Models for Semantic Compositionality over a
Sentiment Treebank, by R. Socher, Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Vol. 1631, 2013). We will see
an (much simplified compared to the cited model) example of this topology as well
later in the chapter.
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Vanishing and exploding
gradients
Just like traditional neural networks, training the RNN also involves
backpropagation. The difference in this case is that since the parameters are shared
by all time steps, the gradient at each output depends not only on the current time
step, but also on the previous ones. This process is called backpropagation
through time (BPTT) (for more information refer to the article: Learning Internal
Representations by Backpropagating errors, by G. E. Hinton, D. E. Rumelhart,
and R. J. Williams, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition 1, 1985):

Consider the small three layer RNN shown in the preceding diagram. During the
forward propagation (shown by the solid lines), the network produces predictions
that are compared to the labels to compute a loss Lt at each time step. During
backpropagation (shown by dotted lines), the gradients of the loss with respect to
the parameters U, V, and W are computed at each time step and the parameters are
updated with the sum of the gradients.

The following equation shows the gradient of the loss with respect to W, the matrix
that encodes weights for the long term dependencies. We focus on this part of the
update because it is the cause of the vanishing and exploding gradient problem. The
other two gradients of the loss with respect to the matrices U and V are also
summed up across all time steps in a similar way:
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Let us now look at what happens to the gradient of the loss at the last time step
(t=3). As you can see, this gradient can be decomposed to a product of three sub
gradients using the chain rule. The gradient of the hidden state h2 with respect to W
can be further decomposed as the sum of the gradient of each hidden state with
respect to the previous one. Finally, each gradient of the hidden state with respect
to the previous one can be further decomposed as the product of gradients of the
current hidden state against the previous one:

Similar calculations are done to compute the gradient of losses L1 and L2 (at time
steps 1 and 2) with respect to W and to sum them into the gradient update for W.
We will not explore the math further in this book. If you want to do so on your
own, this WILDML blog post (https://goo.gl/l06lbX) has a very good explanation of
BPTT, including more detailed derivations of the mathematics behind the process.

For our purposes, the final form of the gradient in the equation above tells us why
RNNs have the problem of vanishing and exploding gradients. Consider the case
where the individual gradients of a hidden state with respect to the previous one is
less than one. As we backpropagate across multiple time steps, the product of
gradients get smaller and smaller, leading to the problem of vanishing gradients.
Similarly, if the gradients are larger than one, the products get larger and larger,
leading to the problem of exploding gradients.

The effect of vanishing gradients is that the gradients from steps that are far away
do not contribute anything to the learning process, so the RNN ends up not learning
long range dependencies. Vanishing gradients can happen for traditional neural
networks as well, it is just more visible in case of RNNs, since RNNs tend to have
many more layers (time steps) over which back propagation must occur.

Exploding gradients are more easily detectable, the gradients will become very large
and then turn into not a number (NaN) and the training process will crash.
Exploding gradients can be controlled by clipping them at a predefined threshold as
discussed in the paper: On the Difficulty of Training Recurrent Neural Networks,
by R. Pascanu, T. Mikolov, and Y. Bengio, ICML, Pp 1310-1318, 2013.

While there are a few approaches to minimize the problem of vanishing gradients,
such as proper initialization of the W matrix, using a ReLU instead of tanh layers,
and pre-training the layers using unsupervised methods, the most popular solution is
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to use the LSTM or GRU architectures. These architectures have been designed to
deal with the vanishing gradient problem and learn long term dependencies more
effectively. We will learn more about LSTM and GRU architectures later in this
chapter.
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Long short term memory —
LSTM
The LSTM is a variant of RNN that is capable of learning long term dependencies.
LSTMs were first proposed by Hochreiter and Schmidhuber and refined by many
other researchers. They work well on a large variety of problems and are the most
widely used type of RNN.

We have seen how the SimpleRNN uses the hidden state from the previous time
step and the current input in a tanh layer to implement recurrence. LSTMs also
implement recurrence in a similar way, but instead of a single tanh layer, there are
four layers interacting in a very specific way. The following diagram illustrates the
transformations that are applied to the hidden state at time step t:

The diagram looks complicated, but let us look at it component by component. The
line across the top of the diagram is the cell state c, and represents the internal
memory of the unit. The line across the bottom is the hidden state, and the i, f, o,
and g gates are the mechanism by which the LSTM works around the vanishing
gradient problem. During training, the LSTM learns the parameters for these gates.

In order to gain a deeper understanding of how these gates modulate the LSTM's
hidden state, let us consider the equations that show how it calculates the hidden
state ht at time t from the hidden state ht-1 at the previous time step:

237



Here i, f, and o are the input, forget, and output gates. They are computed using
the same equations but with different parameter matrices. The sigmoid function
modulates the output of these gates between zero and one, so the output vector
produced can be multiplied element-wise with another vector to define how much
of the second vector can pass through the first one.

The forget gate defines how much of the previous state ht-1 you want to allow to
pass through. The input gate defines how much of the newly computed state for
the current input xt you want to let through, and the output gate defines how much
of the internal state you want to expose to the next layer. The internal hidden state
g is computed based on the current input xt and the previous hidden state ht-1.
Notice that the equation for g is identical to that for the SimpleRNN cell, but in this
case we will modulate the output by the output of the input gate i.

Given i, f, o, and g, we can now calculate the cell state ct at time t in terms of ct-1
at time (t-1) multiplied by the forget gate and the state g multiplied by the input gate
i. So this is basically a way to combine the previous memory and the new input—
setting the forget gate to 0 ignores the old memory and setting the input gate to 0
ignores the newly computed state.

Finally, the hidden state ht at time t is computed by multiplying the memory ct with
the output gate.

One thing to realize is that an LSTM is a drop-in replacement for a SimpleRNN
cell, the only difference is that LSTMs are resistant to the vanishing gradient
problem. You can replace an RNN cell in a network with an LSTM without
worrying about any side effects. You should generally see better results along with
longer training times.

If you would like to know more, WILDML blog post has a very detailed
explanation of these LSTM gates and how they work. For a more visual
explanation, take a look at Christopher Olah's blog post: Understanding LSTMs (htt
p://colah.github.io/posts/2015-08-Understanding-LSTMs/) where he walks you step by step
through these computations, with illustrations at each step.

238

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM with Keras —
sentiment analysis
Keras provides an LSTM layer that we will use here to construct and train a many-
to-one RNN. Our network takes in a sentence (a sequence of words) and outputs a
sentiment value (positive or negative). Our training set is a dataset of about 7,000
short sentences from UMICH SI650 sentiment classification competition on Kaggle
(https://inclass.kaggle.com/c/si650winter11). Each sentence is labeled 1 or 0 for positive or
negative sentiment respectively, which our network will learn to predict.

We start with the imports, as usual:

from keras.layers.core import Activation, Dense, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os

Before we start, we want to do a bit of exploratory analysis on the data.
Specifically we need to know how many unique words there are in the corpus and
how many words are there in each sentence:

maxlen = 0
word_freqs = collections.Counter()
num_recs = 0
ftrain = open(os.path.join(DATA_DIR, "umich-sentiment-train.txt"), 'rb')
for line in ftrain:
    label, sentence = line.strip().split("t")
    words = nltk.word_tokenize(sentence.decode("ascii", "ignore").lower())
    if len(words) > maxlen:
        maxlen = len(words)
    for word in words:
        word_freqs[word] += 1
    num_recs += 1
ftrain.close()

Using this, we get the following estimates for our corpus:

maxlen : 42
len(word_freqs) : 2313
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Using the number of unique words len(word_freqs), we set our vocabulary size to a
fixed number and treat all the other words as out of vocabulary (OOV) words
and replace them with the pseudo-word UNK (for unknown). At prediction time,
this will allow us to handle previously unseen words as OOV words as well.

The number of words in the sentence (maxlen) allows us to set a fixed sequence
length and zero pad shorter sentences and truncate longer sentences to that length
as appropriate. Even though RNNs handle variable sequence length, this is usually
achieved either by padding and truncating as above, or by grouping the inputs in
different batches by sequence length. We will use the former approach here. For
the latter approach, Keras recommends using batches of size one (for more
information refer to: https://github.com/fchollet/keras/issues/40).

Based on the preceding estimates, we set our VOCABULARY_SIZE to 2002. This is 2,000
words from our vocabulary plus the UNK pseudo-word and the PAD pseudo word
(used for padding sentences to a fixed number of words), in our case 40 given by
MAX_SENTENCE_LENGTH:

DATA_DIR = "../data"

MAX_FEATURES = 2000
MAX_SENTENCE_LENGTH = 40

Next we need a pair of lookup tables. Each row of input to the RNN is a sequence
of word indices, where the indices are ordered by most frequent to least frequent
word in the training set. The two lookup tables allow us to lookup an index given
the word and the word given the index. This includes the PAD and UNK pseudo-words
as well:

vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in
enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}

Next, we convert our input sentences to word index sequences, pad them to the
MAX_SENTENCE_LENGTH words. Since our output label in this case is binary (positive or
negative sentiment), we don't need to process the labels:

X = np.empty((num_recs, ), dtype=list)
y = np.zeros((num_recs, ))
i = 0
ftrain = open(os.path.join(DATA_DIR, "umich-sentiment-train.txt"), 'rb')
for line in ftrain:
    label, sentence = line.strip().split("t")
    words = nltk.word_tokenize(sentence.decode("ascii", "ignore").lower())
    seqs = []
    for word in words:
        if word2index.has_key(word):
            seqs.append(word2index[word])
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        else:
            seqs.append(word2index["UNK"])
    X[i] = seqs
    y[i] = int(label)
    i += 1
ftrain.close()
X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)

Finally, we split the training set into a 80-20 training test split:

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)

The following diagram shows the structure of our RNN:

The input for each row is a sequence of word indices. The sequence length is given
by MAX_SENTENCE_LENGTH. The first dimension of the tensor is set to None to indicate
that the batch size (the number of records fed to the network each time) is
currently unknown at definition time; it is specified during run time using the
batch_size parameter. So assuming an as-yet undetermined batch size, the shape of
the input tensor is (None, MAX_SENTENCE_LENGTH, 1). These tensors are fed into an
embedding layer of size EMBEDDING_SIZE whose weights are initialized with small
random values and learned during training. This layer will transform the tensor to a
shape (None,MAX_SENTENCE_LENGTH, EMBEDDING_SIZE). The output of the embedding layer
is fed into an LSTM with sequence length MAX_SENTENCE_LENGTH and output layer size
HIDDEN_LAYER_SIZE, so the output of the LSTM is a tensor of shape (None,
HIDDEN_LAYER_SIZE, MAX_SENTENCE_LENGTH). By default, the LSTM will output a single
tensor of shape (None, HIDDEN_LAYER_SIZE) at its last sequence
(return_sequences=False). This is fed to a dense layer with output size of 1 with a
sigmoid activation function, so it will output either 0 (negative review) or 1 (positive
review).

We compile the model using the binary cross-entropy loss function since it predicts
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a binary value, and the Adam optimizer, a good general purpose optimizer. Note
that the hyperparameters EMBEDDING_SIZE, HIDDEN_LAYER_SIZE, BATCH_SIZE and NUM_EPOCHS
(set as constants as follows) were tuned experimentally over several runs:

EMBEDDING_SIZE = 128
HIDDEN_LAYER_SIZE = 64
BATCH_SIZE = 32
NUM_EPOCHS = 10

model = Sequential()
model.add(Embedding(vocab_size, EMBEDDING_SIZE,
input_length=MAX_SENTENCE_LENGTH))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1))
model.add(Activation("sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adam",
    metrics=["accuracy"])

We then train the network for 10 epochs (NUM_EPOCHS) and batch size of 32
(BATCH_SIZE). At each epoch we validate the model using the test data:

history = model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,
    validation_data=(Xtest, ytest))

The output of this step shows how the loss decreases and accuracy increases over
multiple epochs:

We can also plot the loss and accuracy values over time using the following code:

plt.subplot(211)
plt.title("Accuracy")
plt.plot(history.history["acc"], color="g", label="Train")
plt.plot(history.history["val_acc"], color="b", label="Validation")
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plt.legend(loc="best")

plt.subplot(212)
plt.title("Loss")
plt.plot(history.history["loss"], color="g", label="Train")
plt.plot(history.history["val_loss"], color="b", label="Validation")
plt.legend(loc="best")

plt.tight_layout()
plt.show()

The output of the preceding example is as follows:

Finally, we evaluate our model against the full test set and print the score and
accuracy. We also pick a few random sentences from our test set and print the
RNN's prediction, the label and the actual sentence:

score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))

for i in range(5):
    idx = np.random.randint(len(Xtest))
    xtest = Xtest[idx].reshape(1,40)
    ylabel = ytest[idx]
    ypred = model.predict(xtest)[0][0]
    sent = " ".join([index2word[x] for x in xtest[0].tolist() if x != 0])
    print("%.0ft%dt%s" % (ypred, ylabel, sent))

As you can see from the results, we get back close to 99% accuracy. The
predictions the model makes for this particular set match exactly with the labels,
although this is not the case for all predictions:
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If you would like to run this code locally, you need to get the data from the Kaggle
website.

The source code for this example is available in the file umich_sentiment_lstm.py in
the code download for this chapter.
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Gated recurrent unit —
GRU
The GRU is a variant of the LSTM and was introduced by K. Cho (for more
information refer to: Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation, by K. Cho, arXiv:1406.1078, 2014).
It retains the LSTM's resistance to the vanishing gradient problem, but its internal
structure is simpler, and therefore is faster to train, since fewer computations are
needed to make updates to its hidden state. The gates for a GRU cell are illustrated
in the following diagram:

Instead of the input, forget, and output gates in the LSTM cell, the GRU cell has
two gates,
an update gate z, and a reset gate r. The update gate defines how much previous
memory to keep around and the reset gate defines how to combine the new input
with the previous memory. There is no persistent cell state distinct from the hidden
state as in LSTM. The following equations define the gating mechanism in a GRU:

According to several empirical evaluations (for more information refer to the
articles: An Empirical Exploration of Recurrent Network Architectures, by R.
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Jozefowicz, W. Zaremba, and I. Sutskever, JMLR, 2015 and Empirical
Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, by J.
Chung, arXiv:1412.3555. 2014), GRU and LSTM have comparable performance
and there is no simple way to recommend one or the other for a specific task.
While GRUs are faster to train and need less data to generalize, in situations where
there is enough data, an LSTM's greater expressive power may lead to better
results. Like LSTMs, GRUs are drop-in replacements for the SimpleRNN cell.

Keras provides built in implementations of both LSTM and GRU, as well as the
SimpleRNN class we saw earlier.
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GRU with Keras — POS
tagging
Keras provides a GRU implementation, that we will use here to build a network
that does POS tagging. A POS is a grammatical category of words that are used in
the same way across multiple sentences. Examples of POS are nouns, verbs,
adjectives, and so on. For example, nouns are typically used to identify things,
verbs are typically used to identify what they do, and adjectives to describe some
attribute of these things. POS tagging used to be done manually, but nowadays this
is done automatically using statistical models. In recent years, deep learning has
been applied to this problem as well (for more information refer to the
article: Natural Language Processing (almost) from Scratch, by R. Collobert,
Journal of Machine Learning Research, Pp. 2493-2537, 2011).

For our training data, we will need sentences tagged with part of speech tags. The
Penn Treebank (https://catalog.ldc.upenn.edu/ldc99t42) is one such dataset, it is a human
annotated corpus of about 4.5 million words of American English. However, it is a
non-free resource. A 10% sample of the Penn Treebank is freely available as part
of the NLTK (http://www.nltk.org/), which we will use to train our network.

Our model will take in a sequence of words in a sentence and output the
corresponding POS tags for each word. Thus for an input sequence consisting of
the words [The, cat, sat, on, the, mat, .], the output sequence emitted would be the
POS symbols [DT, NN, VB, IN, DT, NN].

We start with the imports:

from keras.layers.core import Activation, Dense, Dropout, RepeatVector, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import GRU
from keras.layers.wrappers import TimeDistributed
from keras.models import Sequential
from keras.preprocessing import sequence
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
import collections
import nltk
import numpy as np
import os

We then download the data from NLTK in a format suitable for our downstream
code. Specifically, the data is available in parsed form as part of the NLTK
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Treebank corpus. We use the following Python code to download this data into two
parallel files, one for the words in the sentences and one for the POS tags:

DATA_DIR = "../data"

fedata = open(os.path.join(DATA_DIR, "treebank_sents.txt"), "wb")
ffdata = open(os.path.join(DATA_DIR, "treebank_poss.txt"), "wb")

sents = nltk.corpus.treebank.tagged_sents()
for sent in sents:
    words, poss = [], []
    for word, pos in sent:
        if pos == "-NONE-":
            continue
        words.append(word)
        poss.append(pos)
    fedata.write("{:s}n".format(" ".join(words)))
    ffdata.write("{:s}n".format(" ".join(poss)))

fedata.close()
ffdata.close()

Once again, we want to explore the data a little to find out what vocabulary size to
set. This time, we have to consider two different vocabularies, the source
vocabulary for the words and the target vocabulary for the POS tags. We need to
find the number of unique words in each vocabulary. We also need to find the
maximum number of words in a sentence in our training corpus and the number of
records. Because of the one-to-one nature of POS tagging, the last two values are
identical for both vocabularies:

def parse_sentences(filename):
    word_freqs = collections.Counter()
    num_recs, maxlen = 0, 0
    fin = open(filename, "rb")
    for line in fin:
        words = line.strip().lower().split()
        for word in words:
            word_freqs[word] += 1
        if len(words) > maxlen:
            maxlen = len(words)
        num_recs += 1
    fin.close()
    return word_freqs, maxlen, num_recs

    s_wordfreqs, s_maxlen, s_numrecs = parse_sentences(
    os.path.join(DATA_DIR, "treebank_sents.txt"))
    t_wordfreqs, t_maxlen, t_numrecs = parse_sentences(
    os.path.join(DATA_DIR, "treebank_poss.txt"))
print(len(s_wordfreqs), s_maxlen, s_numrecs, len(t_wordfreqs), t_maxlen, t_numrecs)

Running this code tells us that there are 10,947 unique words and 45 unique POS
tags. The maximum sentence size is 249, and the number of sentences in the 10%
set is 3,914. Using this information, we decide to consider only the top 5,000
words for our source vocabulary. Our target vocabulary has 45 unique POS tags,
we want to be able to predict all of them, so we will consider all of them in our

248



vocabulary. Finally, we set 250 to be our maximum sequence length:

MAX_SEQLEN = 250
S_MAX_FEATURES = 5000
T_MAX_FEATURES = 45

Just like our sentiment analysis example, each row of the input will be represented
as a sequence of word indices. The corresponding output will be a sequence of
POS tag indices. So we need to build lookup tables to translate between the
words/POS tags and their corresponding indices. Here is the code to do that. On
the source side, we build a vocabulary index with two extra slots to hold the PAD and
UNK pseudo-words. On the target side, we don't drop any words so there is no need
for the UNK pseudo-word:

s_vocabsize = min(len(s_wordfreqs), S_MAX_FEATURES) + 2
s_word2index = {x[0]:i+2 for i, x in
enumerate(s_wordfreqs.most_common(S_MAX_FEATURES))}
s_word2index["PAD"] = 0
s_word2index["UNK"] = 1
s_index2word = {v:k for k, v in s_word2index.items()}

t_vocabsize = len(t_wordfreqs) + 1
t_word2index = {x[0]:i for i, x in
enumerate(t_wordfreqs.most_common(T_MAX_FEATURES))}
t_word2index["PAD"] = 0
t_index2word = {v:k for k, v in t_word2index.items()}

The next step is to build our datasets to feed into our network. We will use these
lookup tables to convert our input sentences into a word ID sequence of length
MAX_SEQLEN (250). The labels need to be structured as a sequence of one-hot vectors
of size T_MAX_FEATURES + 1 (46), also of length MAX_SEQLEN (250). The build_tensor
function reads the data from the two files and converts them to the input and
output tensors. Additional default parameters are passed in to build the output
tensor. This triggers the call to np_utils.to_categorical() to convert the output
sequence of POS tag IDs to one-hot vector representation:

def build_tensor(filename, numrecs, word2index, maxlen,
        make_categorical=False, num_classes=0):
    data = np.empty((numrecs, ), dtype=list)
    fin = open(filename, "rb")
    i = 0
    for line in fin:
        wids = []
        for word in line.strip().lower().split():
            if word2index.has_key(word):
                wids.append(word2index[word])
            else:
                wids.append(word2index["UNK"])
        if make_categorical:
            data[i] = np_utils.to_categorical(wids, 
                num_classes=num_classes)
        else:
            data[i] = wids
        i += 1
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    fin.close()
    pdata = sequence.pad_sequences(data, maxlen=maxlen)
    return pdata

X = build_tensor(os.path.join(DATA_DIR, "treebank_sents.txt"),
    s_numrecs, s_word2index, MAX_SEQLEN)
Y = build_tensor(os.path.join(DATA_DIR, "treebank_poss.txt"),
    t_numrecs, t_word2index, MAX_SEQLEN, True, t_vocabsize)

We can then split the dataset into a 80-20 train-test split:

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.2, random_state=42)

The following figure shows the schematic of our network. It looks complicated, so
let us deconstruct it:

As previously, assuming that the batch size is as yet undetermined, the input to the
network is a tensor of word IDs of shape (None, MAX_SEQLEN, 1). This is sent through
an embedding layer, which converts each word into a dense vector of shape
(EMBED_SIZE), so the output tensor from this layer has the shape (None, MAX_SEQLEN,
EMBED_SIZE). This tensor is fed to the encoder GRU with an output size of
HIDDEN_SIZE. The GRU is set to return a single context vector
(return_sequences=False) after seeing a sequence of size MAX_SEQLEN, so the output
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tensor from the GRU layer has shape (None, HIDDEN_SIZE).

This context vector is then replicated using the RepeatVector layer into a tensor of
shape (None, MAX_SEQLEN, HIDDEN_SIZE) and fed into the decoder GRU layer. This is
then fed into a dense layer which produces an output tensor of shape (None,
MAX_SEQLEN, t_vocab_size). The activation function on the dense layer is a softmax.
The argmax of each column of this tensor is the index of the predicted POS tag for
the word at that position.

The model definition is shown as follows: EMBED_SIZE, HIDDEN_SIZE, BATCH_SIZE, and
NUM_EPOCHS are hyperparameters which have been assigned these values after
experimenting with multiple different values. The model is compiled with the
categorical_crossentropy loss function since we have multiple categories of labels,
and the optimizer used is the popular adam optimizer:

EMBED_SIZE = 128
HIDDEN_SIZE = 64
BATCH_SIZE = 32
NUM_EPOCHS = 1

model = Sequential()
model.add(Embedding(s_vocabsize, EMBED_SIZE,
input_length=MAX_SEQLEN))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(GRU(HIDDEN_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(RepeatVector(MAX_SEQLEN))
model.add(GRU(HIDDEN_SIZE, return_sequences=True))
model.add(TimeDistributed(Dense(t_vocabsize)))
model.add(Activation("softmax"))

model.compile(loss="categorical_crossentropy", optimizer="adam",
    metrics=["accuracy"])

We train this model for a single epoch. The model is very rich, with many
parameters, and begins to overfit after the first epoch of training. When fed the
same data multiple times in the next epochs, the model begins to overfit to the
training data and does worse on the validation data:

model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,
    validation_data=[Xtest, Ytest])

score, acc = model.evaluate(Xtest, Ytest, batch_size=BATCH_SIZE)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))

The output of the training and the evaluation is shown as follows. As you can see,
the model does quite well after the first epoch of training:
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Similar to actual RNNs, the three recurrent classes in Keras (SimpleRNN, LSTM, and
GRU) are interchangeable. To demonstrate, we simply replace all occurrences of GRU
in the previous program with LSTM and rerun the program. The model definition and
the import statements are the only things that change:

from keras.layers.recurrent import GRU

model = Sequential()
model.add(Embedding(s_vocabsize, EMBED_SIZE,
input_length=MAX_SEQLEN))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(GRU(HIDDEN_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(RepeatVector(MAX_SEQLEN))
model.add(GRU(HIDDEN_SIZE, return_sequences=True))
model.add(TimeDistributed(Dense(t_vocabsize)))
model.add(Activation("softmax"))

As you can see from the output, the results of the GRU-based network are quite
comparable to our previous LSTM-based network.

Sequence-to-sequence models are a very powerful class of model. Its most
canonical application is machine translation, but there are many others such as the
previous example. Indeed, a lot of NLP tasks further up in the hierarchy, such as
named entity recognition (for more information refer to the article: Named Entity
Recognition with Long Short Term Memory, by J. Hammerton, Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL, Association
for Computational Linguistics, 2003) and sentence parsing (for more information
refer to the article: Grammar as a Foreign Language, by O. Vinyals, Advances in
Neural Information Processing Systems, 2015), as well as more complex networks
such as those for image captioning (for more information refer to the article: Deep
Visual-Semantic Alignments for Generating Image Descriptions, by A. Karpathy,
and F. Li, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015.), are examples of the sequence-to-sequence compositional
model.

The full code for this example can be found in the file pos_tagging_gru.py in the the
code download for this chapter.
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Bidirectional RNNs
At a given time step t, the output of the RNN is dependent on the outputs at all
previous time steps. However, it is entirely possible that the output is also
dependent on the future outputs as well. This is especially true for applications such
as NLP, where the attributes of the word or phrase we are trying to predict may be
dependent on the context given by the entire enclosing sentence, not just the words
that came before it. Bidirectional RNNs also help a network architecture place
equal emphasis on the beginning and end of the sequence, and increase the data
available for training.

Bidirectional RNNs are two RNNs stacked on top of each other, reading the input
in opposite directions. So in our example, one RNN will read the words left to right
and the other RNN will read the words right to left. The output at each time step
will be based on the hidden state of both RNNs.

Keras provides support for bidirectional RNNs through a bidirectional wrapper
layer. For example, for our POS tagging example, we could make our LSTMs
bidirectional simply by wrapping them with this Bidirectional wrapper, as shown in
the model definition code as follows:

from keras.layers.wrappers import Bidirectional

model = Sequential()
model.add(Embedding(s_vocabsize, EMBED_SIZE,
input_length=MAX_SEQLEN))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(Bidirectional(LSTM(HIDDEN_SIZE, dropout=0.2, recurrent_dropout=0.2)))
model.add(RepeatVector(MAX_SEQLEN))
model.add(Bidirectional(LSTM(HIDDEN_SIZE, return_sequences=True)))
model.add(TimeDistributed(Dense(t_vocabsize)))
model.add(Activation("softmax"))

This gives us performance comparable to the unidirectional LSTM example shown
as follows:
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Stateful RNNs
RNNs can be stateful, which means that they can maintain state across batches
during training. That is, the hidden state computed for a batch of training data will
be used as the initial hidden state for the next batch of training data. However, this
needs to be explicitly set, since Keras RNNs are stateless by default and resets the
state after each batch. Setting an RNN to be stateful means that it can build a state
across its training sequence and even maintain that state when doing predictions.

The benefits of using stateful RNNs are smaller network sizes and/or lower training
times. The disadvantage is that we are now responsible for training the network
with a batch size that reflects the periodicity of the data, and resetting the state after
each epoch. In addition, data should not be shuffled while training the network,
since the order in which the data is presented is relevant for stateful networks.
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Stateful LSTM with Keras
— predicting electricity
consumption
In this example, we predict electricity consumption for a consumer using a stateful
and stateless LSTM network and compare their behaviors. As you will recall,
RNNs in Keras are stateless by default. In case of stateful models, the internal
states computed after processing a batch of input is reused as initial states for the
next batch. In other words, the state computed from element i in a batch will be
used as initial state for for the element i in the next batch.

The dataset we will use is the electricity load diagram dataset from the UCI
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams2
0112014), and contains consumption information about 370 customers, taken at 15
minute intervals over a four year period from 2011 to 2014. We randomly choose
customer number 250 for our example.

One thing to remember is that most problems can be solved with stateless RNNs,
so if you do use a stateful RNN, make sure you need it. Typically, you would need
it when the data has a periodic component. If you think a bit, you will realize that
electricity consumption is periodic. Consumption tends to be higher during the day
than at night. Let us extract the consumption data for customer number 250 and
plot the first 10 days of data. Finally we also save it to a binary NumPy file for our
next step:

import numpy as np
import matplotlib.pyplot as plt
import os
import re

DATA_DIR = "../data"

fld = open(os.path.join(DATA_DIR, "LD2011_2014.txt"), "rb")
data = []
cid = 250
for line in fld:
    if line.startswith(""";"):
        continue
    cols = [float(re.sub(",", ".", x)) for x in 
                line.strip().split(";")[1:]]
    data.append(cols[cid])
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fld.close()

NUM_ENTRIES = 1000
plt.plot(range(NUM_ENTRIES), data[0:NUM_ENTRIES])
plt.ylabel("electricity consumption")
plt.xlabel("time (1pt = 15 mins)")
plt.show()

np.save(os.path.join(DATA_DIR, "LD_250.npy"), np.array(data))

The output of the preceding example is as follow:

As you can see, there is clearly a daily periodic trend. So the problem is a good
candidate for a stateful model. Also, based on our observation, a BATCH_SIZE of 96
(number of 15 minute readings over 24 hours) seems appropriate.

We will show the code for the stateless version of the model simultaneously with
the one for the stateful version. Most of the code is identical for both versions, so
we will look at both versions simultaneously. I will point out the differences in the
code as they arise.

First, as usual, we import the necessary libraries and classes:

from keras.layers.core import Dense
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import math
import os

Next we load the data for customer 250 into a long array of size (140256) from the
saved NumPy binary file and rescale it to the range (0, 1). Finally, we reshape the
input to three dimensions as needed by our network:

DATA_DIR = "../data"
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data = np.load(os.path.join(DATA_DIR, "LD_250.npy"))
data = data.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1), copy=False)
data = scaler.fit_transform(data)

Within each batch, the model will take a sequence of 15 minute readings and
predict the next one. The length of the input sequence is given by the NUM_TIMESTEPS
variable in the code. Based on some experimentation, we get a value of
NUM_TIMESTEPS as 20, that is, each input row will be a sequence of length 20, and the
output will have length 1. The next step rearranges the input array into X and Y
tensors of shapes (None, 4) and (None, 1). Finally, we reshape the input tensor X to
three dimensions as required by the network:

X = np.zeros((data.shape[0], NUM_TIMESTEPS))
Y = np.zeros((data.shape[0], 1))
for i in range(len(data) - NUM_TIMESTEPS - 1):
    X[i] = data[i:i + NUM_TIMESTEPS].T
    Y[i] = data[i + NUM_TIMESTEPS + 1]

# reshape X to three dimensions (samples, timesteps, features)
X = np.expand_dims(X, axis=2)

We then split our X and Y tensors into a 70-30 training test split. Since we are
working with time series, we just choose a split point and cut the data into two
parts, rather than using the train_test_split function, which also shuffles the data:

sp = int(0.7 * len(data))
Xtrain, Xtest, Ytrain, Ytest = X[0:sp], X[sp:], Y[0:sp], Y[sp:]
print(Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape)

First we define our stateless model. We also set the values of BATCH_SIZE and
NUM_TIMESTEPS, as we discussed previously. Our LSTM output size is given by
HIDDEN_SIZE, another hyperparameter that is usually arrived at through
experimentation. Here, we just set it to 10 since our objective is to compare two
networks:

NUM_TIMESTEPS = 20
HIDDEN_SIZE = 10
BATCH_SIZE = 96 # 24 hours (15 min intervals)

# stateless
model = Sequential()
model.add(LSTM(HIDDEN_SIZE, input_shape=(NUM_TIMESTEPS, 1), 
    return_sequences=False))
model.add(Dense(1))

The corresponding definition for the stateful model is very similar, as you can see
as follows. In the LSTM constructor, you need to set stateful=True, and instead of
input_shape where the batch size is determined at runtime, you need to set
batch_input_shape explicitly with the batch size. You also need to ensure that your
training and test data sizes are perfect multiples of your batch size. We will see how
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to do that later when we look at the training code:

# stateful
model = Sequential()
model.add(LSTM(HIDDEN_SIZE, stateful=True,
    batch_input_shape=(BATCH_SIZE, NUM_TIMESTEPS, 1), 
    return_sequences=False))
model.add(Dense(1))

Next we compile the model, which is the same for both stateless and stateful
RNNs. Notice that our metric here is mean squared error instead of our usual
accuracy. This is because this is really a regression problem; we are interested in
knowing how far off our predictions are with respect to the labels rather than
knowing whether our prediction matched the label. You can find a full list of Keras
built-in metrics on the Keras metrics page:

model.compile(loss="mean_squared_error", optimizer="adam",
    metrics=["mean_squared_error"])

To train the stateless model, we can use the one liner that we have probably
become very familiar with by now:

BATCH_SIZE = 96 # 24 hours (15 min intervals)

# stateless
model.fit(Xtrain, Ytrain, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE,
    validation_data=(Xtest, Ytest),
    shuffle=False)

The corresponding code for the stateful model is shown as follows. There are three
things to be aware of here.

First, you should select a batch size that reflects the periodicity of your data. This is
because stateful RNNs align the states from each batch to the next, so selecting the
right batch size allows the network to learn faster.

Once you set the batch size, the size of your training and test sets needs to be exact
multiples of your batch size. We have ensured this below by truncating the last few
records from both our training and test sets.

The second thing is that you need to fit the model manually, training the model in a
loop for the required number of epochs. Each iteration trains the model for one
epoch, and the state is retained across multiple batches. After each epoch, the state
of the model needs to be reset manually.

The third thing is that the data should be fed in sequence. By default, Keras will
shuffle the rows within each batch, which will destroy the alignment we need for
the stateful RNN to learn effectively. This is done by setting shuffle=False in the call
to model.fit():
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BATCH_SIZE = 96 # 24 hours (15 min intervals)

# stateful
# need to make training and test data to multiple of BATCH_SIZE
train_size = (Xtrain.shape[0] // BATCH_SIZE) * BATCH_SIZE
test_size = (Xtest.shape[0] // BATCH_SIZE) * BATCH_SIZE
Xtrain, Ytrain = Xtrain[0:train_size], Ytrain[0:train_size]
Xtest, Ytest = Xtest[0:test_size], Ytest[0:test_size]
print(Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape)
for i in range(NUM_EPOCHS):
    print("Epoch {:d}/{:d}".format(i+1, NUM_EPOCHS))
    model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE, epochs=1,
        validation_data=(Xtest, Ytest),
        shuffle=False)
    model.reset_states()

Finally, we evaluate the model against the test data and print out the scores:

score, _ = model.evaluate(Xtest, Ytest, batch_size=BATCH_SIZE)
rmse = math.sqrt(score)
print("MSE: {:.3f}, RMSE: {:.3f}".format(score, rmse))

The output for the stateless model, run over five epochs, is as follows:

The corresponding output for the stateful model, also run in a loop five times for
one epoch each time, is as follows. Notice the result of the truncating operation in
the second line:
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As you can see, the stateful model produces results that are slightly better than the
stateless model. In absolute terms, since we have scaled our data to the (0, 1)
range, this means that the stateless model has about 6.2% error rate and the stateful
model has a 5.9% error rate, or conversely, they are about 93.8% and 94.1%
accurate respectively. In relative terms, therefore, our stateful model outperforms
the stateless model by a slight margin.

The source code for this example is provided in the files econs_data.py that parses
the dataset, and econs_stateful.py that defines and trains the stateless and stateful
models, available from the code download for this chapter.
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Other RNN variants
We will round up this chapter by looking at some more variants of the RNN cell.
RNN is an area of active research and many researchers have suggested variants
for specific purposes.

One popular LSTM variant is adding peephole connections, which means that the
gate layers are allowed to peek at the cell state. This was introduced by Gers and
Schmidhuber (for more information refer to the article: Learning Precise Timing
with LSTM Recurrent Networks, by F. A. Gers, N. N. Schraudolph, and J.
Schmidhuber, Journal of Machine Learning Research, pp. 115-43) in 2002.

Another LSTM variant, that ultimately led to the GRU, is to use coupled forget and
output gates. Decisions about what information to forget and what to acquire are
made together, and the new information replaces the forgotten information.

Keras provides only the three basic variants, namely the SimpleRNN, LSTM, and
GRU layers. However, that isn't necessarily a problem. Gref conducted an
experimental survey (for more information refer to the article: LSTM: A Search
Space Odyssey, by K. Greff, arXiv:1503.04069, 2015) of many LSTM variants,
and concluded that none of the variants improved significantly over the standard
LSTM architecture. So the components provided in Keras are usually sufficient to
solve most problems.

In case you do need the capability to construct your own layer, you can build
custom Keras layers. We will look at how to build a custom layer in the next
chapter. There is also an open source framework called recurrent shop (https://github.
com/datalogai/recurrentshop) that allows you to build complex recurrent neural networks
with Keras.
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Summary
In this chapter, we looked at the basic architecture of recurrent neural networks and
how they work better than traditional neural networks over sequence data. We saw
how RNNs can be used to learn an author's writing style and generate text using the
learned model. We also saw how this example can be extended to predicting stock
prices or other time series, speech from noisy audio, and so on, as well as generate
music that was composed by a learned model.

We looked at different ways to compose our RNN units and these topologies can
be used to model and solve specific problems such as sentiment analysis, machine
translation, image captioning, and classification, and so on.

We then looked at one of the biggest drawbacks of the SimpleRNN architecture,
that of vanishing and exploding gradients. We saw how the vanishing gradient
problem is handled using the LSTM (and GRU) architectures. We also looked at
the LSTM and GRU architectures in some detail. We also saw two examples of
predicting sentiment using an LSTM-based model, and predicting POS tags using a
GRU-based sequence-to-sequence architecture.

We then learned about stateful RNNs and how they can be used in Keras. We also
saw an example of learning a stateful RNN to predict CO levels in the atmosphere.

Finally, we learned about some RNN variants that are not available in Keras, and
briefly explored how to build them.

In the next chapter, we will look at models that don't quite fit into the basic molds
we have looked at so far. We will also look at composing these basic models larger
and more complex ones using the Keras functional API, as well as look at some
examples of customizing Keras to our needs.
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Additional Deep Learning
Models
So far, most of the discussion has been focused around different models that do
classification. These models are trained using object features and their labels to
predict labels for hitherto unseen objects. The models also had a fairly simple
architecture, all the ones we have seen so far have a linear pipeline modeled by the
Keras sequential API.

In this chapter, we will focus on more complex architectures where the pipelines
are not necessarily linear. Keras provides the functional API to deal with these sorts
of architectures. We will learn how to define our networks using the functional API
in this chapter. Note that the functional API can be used to build linear
architectures as well.

The simplest extension of classification networks are regression networks. The two
broad subcategories under supervised machine learning are classification and
regression. Instead of predicting a category, the network now predicts a continuous
value. You saw an example of a regression network when we discussed stateless
versus stateful RNNs. Many regression problems can be solved using classification
models with very little effort. We will see an example of such a network to predict
atmospheric benzene in this chapter.

Yet another class of models deal with learning the structure of the data from
unlabeled data. These are called unsupervised (or more correctly, self-supervised)
models. They are similar to classification models, but the labels are available
implicitly within the data. We have already seen examples of this kind of model; for
example, the CBOW and skip-gram word2vec models are self-supervised models.
Autoencoders are another example of this type of model. We will learn about
autoencoders and describe an example that builds compact vector representations
of sentences.

We will then look at how to compose the networks we have seen so far into larger
computation graphs. These graphs are often built to achieve some custom objective
that is not achievable by a sequential model alone, and may have multiple inputs
and outputs and connections to external components. We will see an example of
composing such a network for question answering.

We then take a detour to look at the Keras backend API, and how we can use this
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API to build custom components to extend Keras' functionality.

Going back to models for unlabeled data, another class of models that don't require
labels are generative models. These models are trained using a set of existing
objects and attempt to learn the distribution these objects come from. Once the
distribution is learned, we can draw samples from this distribution that look like the
original training data. We have seen an example of this where we trained a
character RNN model to generate text similar to Alice in Wonderland in the
previous chapter. The idea is already covered, so we won't cover this particular
aspect of generative models here. However, we will look at how we can leverage
the idea of a trained network learning the data distribution to create interesting
visual effects using a VGG-16 network pre-trained on ImageNet data.

To summarize, we will learn the following topics in this chapter:

The Keras functional API
Regression networks
Autoencoders for unsupervised learning
Composing complex networks with the functional API
Customizing Keras
Generative networks

Let's get started.
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Keras functional API
The Keras functional API defines each layer as a function and provides operators
to compose these functions into a larger computational graph. A function is some
sort of transformation with a single input and single output. For example, the
function y = f(x) defines a function f with input x and output y. Let us consider the
simple sequential model from Keras (for more information refer to: https://keras.io/getti
ng-started/sequential-model-guide/):

from keras.models import Sequential
from keras.layers.core import dense, Activation

model = Sequential([
   dense(32, input_dim=784),
   Activation("sigmoid"),
   dense(10),
   Activation("softmax"),
])

model.compile(loss="categorical_crossentropy", optimizer="adam")

As you can see, the sequential model represents the network as a linear pipeline, or
list, of layers. We can also represent the network as the composition of the
following nested functions. Here x is the input tensor of shape (None, 784) and y is
the output tensor of (None, 10). Here None refers to the as-yet undetermined batch
size:

Where:

The network can be redefined using the Keras functional API as follows. Notice
how the predictions variable is a composition of the same functions we defined in
equation form previously:

from keras.layers import Input
from keras.layers.core import dense
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from keras.models import Model
from keras.layers.core import Activation

inputs = Input(shape=(784,))

x = dense(32)(inputs)
x = Activation("sigmoid")(x)
x = dense(10)(x)
predictions = Activation("softmax")(x)

model = Model(inputs=inputs, outputs=predictions)

model.compile(loss="categorical_crossentropy", optimizer="adam")

Since a model is a composition of layers that are also functions, a model is also a
function. Therefore, you can treat a trained model as just another layer by calling it
on an appropriately shaped input tensor. Thus, if you have built a model that does
something useful like image classification, you can easily extend it to work with a
sequence of images using Keras's TimeDistributed wrapper:

sequence_predictions = TimeDistributed(model)(input_sequences)

The functional API can be used to define any network that can be defined using
the sequential API. In addition, the following types of network can only be
defined using the functional API:

Models with multiple inputs and outputs
Models composed of multiple submodels
Models that used shared layers

Models with multiple inputs and outputs are defined by composing the inputs and
outputs separately, as shown in the preceding example, and then passing in an array
of input functions and an array of output functions in the input and output
parameters of the Model constructor:

model = Model(inputs=[input1, input2], outputs=[output1, output2])

Models with multiple inputs and outputs also generally consist of multiple
subnetworks, the results of whose computations are merged into the final result.
The merge function provides multiple ways to merge intermediate results such as
vector addition, dot product, and concatenation. We will see examples of merging in
our question answering example later in this chapter.

Another good use for the functional API are models that use shared layers. Shared
layers are defined once, and referenced in each pipeline where their weights need to
be shared.

We will use the functional API almost exclusively in this chapter, so you will see
quite a few examples of its use. The Keras website has many more usage examples
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for the functional API.
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Regression networks
The two major techniques of supervised learning are classification and regression.
In both cases, the model is trained with data to predict known labels. In case of
classification, these labels are discrete values such as genres of text or image
categories. In case of regression, these labels are continuous values, such as stock
prices or human intelligence quotients (IQ).

Most of the examples we have seen show deep learning models being used to
perform classification. In this section, we will look at how to perform regression
using such a model.

Recall that classification models have a dense layer with a nonlinear activation at
the end, the output dimension of which corresponds to the number of classes the
model can predict. Thus, an ImageNet image classification model has a dense
(1,000) layer at the end, corresponding to 1,000 ImageNet classes it can predict.
Similarly, a sentiment analysis model has a dense layer at the end, corresponding to
positive or negative sentiment.

Regression models also have a dense layer at the end, but with a single output, that
is, an output dimension of one, and no nonlinear activation. Thus the dense layer
just returns the sum of the activations from the previous layer. In addition, the loss
function used is typically mean squared error (MSE), but some of the other
objectives (listed on the Keras objectives page at: https://keras.io/losses/) can be used
as well.

268

https://keras.io/losses/


Keras regression example
— predicting benzene levels
in the air
In this example, we will predict the concentration of benzene in the atmosphere
given some other variables such as concentrations of carbon monoxide, nitrous
oxide, and so on in the atmosphere as well as temperature and relative humidity.
The dataset we will use is the air quality dataset from the UCI Machine Learning
Repository (https://archive.ics.uci.edu/ml/datasets/Air+Quality). The dataset contains 9,358
instances of hourly averaged readings from an array of five metal oxide chemical
sensors. The sensor array was located in a city in Italy, and the recordings were
made from March 2004 to February 2005.

As usual, first we import all our necessary libraries:

from keras.layers import Input
from keras.layers.core import dense
from keras.models import Model
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd

The dataset is provided as a CSV file. We load the input data into a Pandas (for
more information refer to: http://pandas.pydata.org/) data frame. Pandas is a popular
data analysis library built around data frames, a concept borrowed from the R
language. We use Pandas here to read the dataset for two reasons. First, the dataset
contains empty fields where they could not be recorded for some reason. Second,
the dataset uses commas for decimal points, a custom common in some European
countries. Pandas has built-in support to handle both situations, along with a few
other conveniences, as we will see soon:

DATA_DIR = "../data"
AIRQUALITY_FILE = os.path.join(DATA_DIR, "AirQualityUCI.csv")

aqdf = pd.read_csv(AIRQUALITY_FILE, sep=";", decimal=",", header=0)

# remove first and last 2 cols 
del aqdf["Date"]
del aqdf["Time"]
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del aqdf["Unnamed: 15"]
del aqdf["Unnamed: 16"]

# fill NaNs in each column with the mean value
aqdf = aqdf.fillna(aqdf.mean())

Xorig = aqdf.as_matrix()

The preceding example removes the first two columns, which contains the
observation date and time, and the last two columns which seem to be spurious.
Next we replace the empty fields with the average value for the column. Finally, we
export the data frame as a matrix for downstream use.

One thing to note is that each column of the data has different scales since they
measure different quantities. For example, the concentration of tin oxide is in the
1,000 range, while non-methanic hydrocarbons is in the 100 range. In many
situations our features are homogeneous so scaling is not an issue, but in cases like
this it is generally a good practice to scale the data. Scaling here consists of
subtracting from each column the mean of the column and dividing by its standard
deviation:

To do this, we use the StandardScaler class provided by the scikit-learn library,
shown as follows. We store the mean and standard deviations because we will need
this later when reporting results or predicting against new data. Our target variable
is the fourth column in our input dataset, so we split this scaled data into input
variables X and target variable y:

scaler = StandardScaler()
Xscaled = scaler.fit_transform(Xorig)
# store these off for predictions with unseen data
Xmeans = scaler.mean_
Xstds = scaler.scale_

y = Xscaled[:, 3]
X = np.delete(Xscaled, 3, axis=1)

We then split the data into the first 70% for training and the last 30% for testing.
This gives us 6,549 records for training and 2,808 records for testing:

train_size = int(0.7 * X.shape[0])
Xtrain, Xtest, ytrain, ytest = X[0:train_size], X[train_size:], 
    y[0:train_size], y[train_size:]

Next we define our network. This is a simple two layer dense network that takes a
vector of 12 features as input and outputs a scaled prediction. The hidden dense
layer has eight neurons. We initialize weight matrices for both dense layers with a
specific initialization scheme called glorot uniform. For a full list of initialization
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schemes, please refer to the Keras initializations here: https://keras.io/initializers/. The
loss function used is mean squared error (mse) and the optimizer is adam:

readings = Input(shape=(12,))
x = dense(8, activation="relu", kernel_initializer="glorot_uniform")(readings)
benzene = dense(1, kernel_initializer="glorot_uniform")(x)

model = Model(inputs=[readings], outputs=[benzene])
model.compile(loss="mse", optimizer="adam")

We train this model for 20 epochs and batch size of 10:

NUM_EPOCHS = 20
BATCH_SIZE = 10

history = model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,
    validation_split=0.2)

This results in a model that has a mean squared error of 0.0003 (approximately 2%
RMSE) on the training set and 0.0016 (approximately 4% RMSE) on the validation
set, as shown in the logs of the training step here:

We also look at some values of benzene concentrations that were originally
recorded and compare them to those predicted by our model. Both actual and
predicted values are rescaled from their scaled z-values to actual values:

ytest_ = model.predict(Xtest).flatten()
for i in range(10):
    label = (ytest[i] * Xstds[3]) + Xmeans[3]
    prediction = (ytest_[i] * Xstds[3]) + Xmeans[3]
    print("Benzene Conc. expected: {:.3f}, predicted: {:.3f}".format(label, prediction))

The side-by-side comparison shows that the predictions are quite close to the actual
values:

Benzene Conc. expected: 4.600, predicted: 5.254
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Benzene Conc. expected: 5.500, predicted: 4.932
Benzene Conc. expected: 6.500, predicted: 5.664
Benzene Conc. expected: 10.300, predicted: 8.482
Benzene Conc. expected: 8.900, predicted: 6.705
Benzene Conc. expected: 14.000, predicted: 12.928
Benzene Conc. expected: 9.200, predicted: 7.128
Benzene Conc. expected: 8.200, predicted: 5.983
Benzene Conc. expected: 7.200, predicted: 6.256
Benzene Conc. expected: 5.500, predicted: 5.184

Finally, we graph the actual values against the predictions for our entire test set.
Once more, we see that the network predicts values that are very close to the
expected values:

plt.plot(np.arange(ytest.shape[0]), (ytest * Xstds[3]) / Xmeans[3], 
    color="b", label="actual")
plt.plot(np.arange(ytest_.shape[0]), (ytest_ * Xstds[3]) / Xmeans[3], 
    color="r", alpha=0.5, label="predicted")
plt.xlabel("time")
plt.ylabel("C6H6 concentrations")
plt.legend(loc="best")
plt.show()

The output of the preceding example is as follows:
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Unsupervised learning —
autoencoders
Autoencoders are a class of neural network that attempt to recreate the input as its
target using back-propagation. An autoencoder consists of two parts, an encoder
and a decoder. The encoder will read the input and compress it to a compact
representation, and the decoder will read the compact representation and recreate
the input from it. In other words, the autoencoder tries to learn the identity function
by minimizing the reconstruction error.

Even though the identity function does not seem like a very interesting function to
learn, the way in which this is done makes it interesting. The number of hidden
units in the autoencoder is typically less than the number of input (and output)
units. This forces the encoder to learn a compressed representation of the input
which the decoder reconstructs. If there is structure in the input data in the form of
correlations between input features, then the autoencoder will discover some of
these correlations, and end up learning a low dimensional representation of the data
similar to that learned using principal component analysis (PCA).

Once the autoencoder is trained, we would typically just discard the decoder
component and use the encoder component to generate compact representations of
the input. Alternatively, we could use the encoder as a feature detector that
generates a compact, semantically rich representation of our input and build a
classifier by attaching a softmax classifier to the hidden layer.

The encoder and decoder components of an autoencoder can be implemented using
either dense, convolutional, or recurrent networks, depending on the kind of data
that is being modeled. For example, dense networks might be a good choice for
autoencoders used to build collaborative filtering (CF) models (for more
information refer to the articles: AutoRec: Autoencoders Meet Collaborative
Filtering, by S. Sedhain, Proceedings of the 24th International Conference on
World Wide Web, ACM, 2015 and Wide & Deep Learning for Recommender
Systems, by H. Cheng, Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, ACM, 2016), where we learn a compressed model of user
preferences based on actual sparse user ratings. Similarly, convolutional neural
networks may be appropriate for the use case covered in the article: See: Using
Deep Learning to Remove Eyeglasses from Faces, by M. Runfeldt. and recurrent
networks a good choice for autoencoders building on text data, such as deep patient
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(for more information refer to the article: Deep Patient: An Unsupervised
Representation to Predict the Future of Patients from the Electronic Health
Records, by R. Miotto, Scientific Reports 6, 2016) and skip-thought vectors ((for
more information refer to the article: Skip-Thought Vectors, by R. Kiros, Advances
in Neural Information Processing Systems, 2015).

Autoencoders can also be stacked by successively stacking encoders that compress
their input to smaller and smaller representations, and stacking decoders in the
opposite sequence. Stacked autoencoders have greater expressive power and the
successive layers of representations capture a hierarchical grouping of the input,
similar to the convolution and pooling operations in convolutional neural networks.

Stacked autoencoders used to be trained layer by layer. For example, in the
network shown next, we would first train layer X to reconstruct layer X' using the
hidden layer H1 (ignoring H2). We would then train the layer H1 to reconstruct
layer H1' using the hidden layer H2. Finally, we would stack all the layers together
in the configuration shown and fine tune it to reconstruct X' from X. With better
activation and regularization functions nowadays, however, it is quite common to
train these networks in totality:

The Keras blog post, Building Autoencoders in Keras (https://blog.keras.io/building-autoe
ncoders-in-keras.html) has great examples of building autoencoders that reconstructs
MNIST digit images using fully connected and convolutional neural networks. It
also has a good discussion on denoising and variational autoencoders, which we will
not cover here.
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Keras autoencoder example
— sentence vectors
In this example, we will build and train an LSTM-based autoencoder to generate
sentence vectors for documents in the Reuters-21578 corpus (https://archive.ics.uci.edu/
ml/datasets/Reuters-21578+Text+Categorization+Collection). We have already seen in Chapter
5, Word Embeddings, how to represent a word using word embeddings to create
vectors that represent its meaning in the context of other words it appears with.
Here, we will see how to build similar vectors for sentences. Sentences are a
sequence of words, so a sentence vector represents the meaning of the sentence.

The easiest way to build a sentence vector is to just add up the word vectors and
divide by the number of words. However, this treats the sentence as a bag of
words, and does not take the order of words into account. Thus the sentences The
dog bit the man and The man bit the dog would be treated as identical under this
scenario. LSTMs are designed to work with sequence input and do take the order
of words into consideration thus providing a better and more natural representation
for the sentence.

First we import the necessary libraries:

from sklearn.model_selection import train_test_split
from keras.callbacks import ModelCheckpoint
from keras.layers import Input
from keras.layers.core import RepeatVector
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import Bidirectional
from keras.models import Model
from keras.preprocessing import sequence
from scipy.stats import describe
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os

The data is provided as a set of SGML files. We have already parsed and
consolidated this data into a single text file in Chapter 6, Recurrent Neural Network
— RNN, for our GRU-based POS tagging example. We will reuse this data to first
convert each block of text into a list of sentences, one sentence per line:

sents = []
fsent = open(sent_filename, "rb")
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for line in fsent:
    docid, sent_id, sent = line.strip().split("t")
    sents.append(sent)
fsent.close()

To build up our vocabulary, we read this list of sentences again, word by word.
Each word is normalized as it is added. The normalization is to replace any token
that looks like a number with the digit 9 and to lowercase them. The result is the
word frequency table, word_freqs. We also compute the sentence length for each
sentence and create a list of parsed sentences by rejoining the tokens with space so
it is easier to parse in a subsequent step:

def is_number(n):
    temp = re.sub("[.,-/]", "", n)
    return temp.isdigit()

word_freqs = collections.Counter()
sent_lens = []
parsed_sentences = []
for sent in sentences:
    words = nltk.word_tokenize(sent)
    parsed_words = []
    for word in words:
        if is_number(word):
            word = "9"
        word_freqs[word.lower()] += 1
        parsed_words.append(word)
    sent_lens.append(len(words))
    parsed_sentences.append(" ".join(parsed_words))

This gives us some information about the corpus that will help us figure out good
values for our constants for our LSTM network:

sent_lens = np.array(sent_lens)
print("number of sentences: {:d}".format(len(sent_lens)))
print("distribution of sentence lengths (number of words)")
print("min:{:d}, max:{:d}, mean:{:.3f}, med:{:.3f}".format(
np.min(sent_lens), np.max(sent_lens), np.mean(sent_lens),
np.median(sent_lens)))
print("vocab size (full): {:d}".format(len(word_freqs)))

This gives us the following information about the corpus:

number of sentences: 131545
 distribution of sentence lengths (number of words)
 min: 1, max: 429, mean: 22.315, median: 21.000
 vocab size (full): 50751

Based on this information, we set the following constants for our LSTM model. We
choose our VOCAB_SIZE as 5000, that is, our vocabulary covers the most frequent
5,000 words that cover over 93% of the words used in the corpus. The remaining
words are treated as out of vocabulary (OOV) and replaced with the token UNK.
At prediction time, any word that the model hasn't seen will also be assigned the
token UNK. SEQUENCE_LEN is set to approximately twice the median length of sentences
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in the training set, and indeed, approximately 110 million of our 131 million
sentences are shorter than this setting. Sentences that are shorter than
SEQUENCE_LENGTH will be padded by a special PAD character, and those that are longer
will be truncated to fit the limit:

VOCAB_SIZE = 5000
SEQUENCE_LEN = 50

Since the input to our LSTM will be numeric, we need to build lookup tables that
go back and forth between words and word IDs. Since we limit our vocabulary size
to 5,000 and we have to add the two pseudo-words PAD and UNK, our lookup table
contains entries for the most frequently occurring 4,998 words plus PAD and UNK:

word2id = {}
word2id["PAD"] = 0
word2id["UNK"] = 1
for v, (k, _) in enumerate(word_freqs.most_common(VOCAB_SIZE - 2)):
    word2id[k] = v + 2
id2word = {v:k for k, v in word2id.items()}

The input to our network is a sequence of words, where each word is represented
by a vector. Simplistically, we could just use a one-hot encoding for each word, but
that makes the input data very large. So we encode each word using its 50-
dimensional GloVe embeddings. The embedding is generated into a matrix of shape
(VOCAB_SIZE, EMBED_SIZE) where each row represents the GloVe embedding for a
word in our vocabulary. The PAD and UNK rows (0 and 1 respectively) are populated
with zeros and random uniform values respectively:

EMBED_SIZE = 50

def lookup_word2id(word):
    try:
        return word2id[word]
    except KeyError:
        return word2id["UNK"]

def load_glove_vectors(glove_file, word2id, embed_size):
    embedding = np.zeros((len(word2id), embed_size))
    fglove = open(glove_file, "rb")
    for line in fglove:
        cols = line.strip().split()
        word = cols[0]
        if embed_size == 0:
            embed_size = len(cols) - 1
        if word2id.has_key(word):
            vec = np.array([float(v) for v in cols[1:]])
        embedding[lookup_word2id(word)] = vec
    embedding[word2id["PAD"]] = np.zeros((embed_size))
    embedding[word2id["UNK"]] = np.random.uniform(-1, 1, embed_size)
    return embedding

embeddings = load_glove_vectors(os.path.join(
    DATA_DIR, "glove.6B.{:d}d.txt".format(EMBED_SIZE)), word2id, EMBED_SIZE)
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Our autoencoder model takes a sequence of GloVe word vectors and learns to
produce another sequence that is similar to the input sequence. The encoder LSTM
compresses the sequence into a fixed size context vector, which the decoder LSTM
uses to reconstruct the original sequence. A schematic of the network is shown
here:

Because the input is quite large, we will use a generator to produce each batch of
input. Our generator produces batches of tensors of shape (BATCH_SIZE,
SEQUENCE_LEN, EMBED_SIZE). Here BATCH_SIZE is 64, and since we are using 50-
dimensional GloVe vectors, EMBED_SIZE is 50. We shuffle the sentences at the
beginning of each epoch, and return batches of 64 sentences. Each sentence is
represented as a vector of GloVe word vectors. If a word in the vocabulary does
not have a corresponding GloVe embedding, it is represented by a zero vector. We
construct two instances of the generator, one for training data and one for test data,
consisting of 70% and 30% of the original dataset respectively:

BATCH_SIZE = 64

def sentence_generator(X, embeddings, batch_size):
    while True:
        # loop once per epoch
        num_recs = X.shape[0]
        indices = np.random.permutation(np.arange(num_recs))
        num_batches = num_recs // batch_size
        for bid in range(num_batches):
            sids = indices[bid * batch_size : (bid + 1) * batch_size]
            Xbatch = embeddings[X[sids, :]]
            yield Xbatch, Xbatch

train_size = 0.7
Xtrain, Xtest = train_test_split(sent_wids, train_size=train_size)
train_gen = sentence_generator(Xtrain, embeddings, BATCH_SIZE)
test_gen = sentence_generator(Xtest, embeddings, BATCH_SIZE)

Now we are ready to define the autoencoder. As we have shown in the diagram, it
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is composed of an encoder LSTM and a decoder LSTM. The encoder LSTM
reads a tensor of shape (BATCH_SIZE, SEQUENCE_LEN, EMBED_SIZE) representing a batch
of sentences. Each sentence is represented as a padded fixed-length sequence of
words of size SEQUENCE_LEN. Each word is represented as a 300-dimensional GloVe
vector. The output dimension of the encoder LSTM is a hyperparameter
LATENT_SIZE, which is the size of the sentence vector that will get out of the encoder
part of the trained autoencoder later. The vector space of dimensionality LATENT_SIZE
represents the latent space that encodes the meaning of the sentence. The output of
the LSTM is a vector of size (LATENT_SIZE) for each sentence, so for the batch the
shape of the output tensor is (BATCH_SIZE, LATENT_SIZE). This is now fed to a
RepeatVector layer, which replicates this across the entire sequence, that is., the
output tensor from this layer has the shape (BATCH_SIZE, SEQUENCE_LEN, LATENT_SIZE).
This tensor is now fed into the decoder LSTM, whose output dimension is the
EMBED_SIZE, so the output tensor has shape (BATCH_SIZE, SEQUENCE_LEN, EMBED_SIZE),
that is, the same shape as the input tensor.

We compile this model with the SGD optimizer and the mse loss function. The reason
we use MSE is that we want to reconstruct a sentence that has a similar meaning,
that is, something that is close to the original sentence in the embedded space of
dimension LATENT_SIZE:

inputs = Input(shape=(SEQUENCE_LEN, EMBED_SIZE), name="input")
encoded = Bidirectional(LSTM(LATENT_SIZE), merge_mode="sum",
    name="encoder_lstm")(inputs)
decoded = RepeatVector(SEQUENCE_LEN, name="repeater")(encoded)
decoded = Bidirectional(LSTM(EMBED_SIZE, return_sequences=True),
    merge_mode="sum",
    name="decoder_lstm")(decoded)

autoencoder = Model(inputs, decoded)

autoencoder.compile(optimizer="sgd", loss="mse")

We train the autoencoder for 10 epochs using the following code. 10 epochs were
chosen because the MSE loss converges within this time. We also save the best
model retrieved so far based on the MSE loss:

num_train_steps = len(Xtrain) // BATCH_SIZE
num_test_steps = len(Xtest) // BATCH_SIZE
checkpoint = ModelCheckpoint(filepath=os.path.join(DATA_DIR,
    "sent-thoughts-autoencoder.h5"), save_best_only=True)
history = autoencoder.fit_generator(train_gen,
    steps_per_epoch=num_train_steps,
    epochs=NUM_EPOCHS,
    validation_data=test_gen,
    validation_steps=num_test_steps,
    callbacks=[checkpoint])

The results of the training are shown as follows. As you can see, the training MSE
reduces from 0.14 to 0.1 and the validation MSE reduces from 0.12 to 0.1:
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Or, graphically it shows as follows:

Since we are feeding in a matrix of embeddings, the output will also be a matrix of
word embeddings. Since the embedding space is continuous and our vocabulary is
discrete, not every output embedding will correspond to a word. The best we can
do is to find a word that is closest to the output embedding in order to reconstruct
the original text. This is a bit cumbersome, so we will evaluate our autoencoder in a
different way.

Since the objective of the autoencoder is to produce a good latent representation,
we compare the latent vectors produced from the encoder using the original input
versus the output of the autoencoder. First, we extract the encoder component into
its own network:

encoder = Model(autoencoder.input, autoencoder.get_layer("encoder_lstm").output)

Then we run the autoencoder on the test set to return the predicted embeddings.
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We then send both the input embedding and the predicted embedding through the
encoder to produce sentence vectors from each, and compare the two vectors using
cosine similarity. Cosine similarities close to one indicate high similarity and those
close to zero indicate low similarity. The following code runs against a random
subset of 500 test sentences and produces some sample values of cosine similarities
between the sentence vectors generated from the source embedding and the
corresponding target embedding produced by the autoencoder:

def compute_cosine_similarity(x, y):
    return np.dot(x, y) / (np.linalg.norm(x, 2) * np.linalg.norm(y, 2))

k = 500
cosims = np.zeros((k))
i = 0
for bid in range(num_test_steps):
    xtest, ytest = test_gen.next()
    ytest_ = autoencoder.predict(xtest)
    Xvec = encoder.predict(xtest)
    Yvec = encoder.predict(ytest_)
    for rid in range(Xvec.shape[0]):
        if i >= k:
            break
        cosims[i] = compute_cosine_similarity(Xvec[rid], Yvec[rid])
        if i <= 10:
            print(cosims[i])
            i += 1
if i >= k:
    break

The first 10 values of cosine similarities are shown as follows. As we can see, the
vectors seem to be quite similar:

0.982818722725
0.970908224583
0.98131018877
0.974798440933
0.968060493469
0.976065933704
0.96712064743
0.949920475483
0.973583400249
0.980291545391
0.817819952965

A histogram of the distribution of values of cosine similarities for the sentence
vectors from the first 500 sentences in the test set are shown as follows. As
previously, it confirms that the sentence vectors generated from the input and
output of the autoencoder are very similar, showing that the resulting sentence
vector is a good representation of the sentence:
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Composing deep networks
We have looked extensively at these three basic deep learning networks—the fully
connected network (FCN), the CNN and the RNN models. While each of these
have specific use cases for which they are most suited, you can also compose
larger and more useful models by combining these models as Lego-like building
blocks and using the Keras functional API to glue them together in new and
interesting ways.

Such models tend to be somewhat specialized to the task for which they were built,
so it is impossible to generalize about them. Usually, however, they involve learning
from multiple inputs or generating multiple outputs. One example could be a
question answering network, where the network learns to predict answers given a
story and a question. Another example could be a siamese network that calculates
similarity between a pair of images, where the network is trained to predict either a
binary (similar/not similar) or categorical (gradations of similarity) label using a pair
of images as input. Yet another example could be an object classification and
localization network where it learns to predict the image category as well as where
the image is located in the picture jointly from the image. The first two examples
are examples of composite networks with multiple inputs, and the last is an example
of a composite network with multiple outputs.
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Keras example — memory
network for question
answering
In this example, we will build a memory network for question answering. Memory
networks are a specialized architecture that consist of a memory unit in addition to
other learnable units, usually RNNs. Each input updates the memory state and the
final output is computed by using the memory along with the output from the
learnable unit. This architecture was suggested in 2014 via the paper (for more
information refer to: Memory Networks, by J. Weston, S. Chopra, and A. Bordes,
arXiv:1410.3916, 2014). A year later, another paper (for more information refer
to: Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks, by
J. Weston, arXiv:1502.05698, 2015) put forward the idea of a synthetic dataset and
a standard set of 20 question answering tasks, each with a higher degree of
difficulty than the previous one, and applied various deep learning networks to
solve these tasks. Of these, the memory network achieved the best results across
all the tasks. This dataset was later made available to the general public through
Facebook's bAbI project (https://research.fb.com/projects/babi/). The implementation of
our memory network resembles most closely the one described in this paper (for
more information refer to: End-To-End Memory Networks, by S. Sukhbaatar, J.
Weston, and R. Fergus, Advances in Neural Information Processing Systems,
2015), in that all the training happens jointly in a single network. It uses the bAbI
dataset to solve the first question answering task.

First, we will import the necessary libraries:

from keras.layers import Input
from keras.layers.core import Activation, dense, Dropout, Permute
from keras.layers.embeddings import Embedding
from keras.layers.merge import add, concatenate, dot
from keras.layers.recurrent import LSTM
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils
import collections
import itertools
import nltk
import numpy as np
import matplotlib.pyplot as plt
import os

284

https://research.fb.com/projects/babi/


The bAbI data for the first question answering task consists of 10,000 short
sentences each for the training and the test sets. A story consists of two to three
sentences, followed by a question. The last sentence in each story has the question
and the answer appended to it at the end. The following block of code parses each
of the training and test files into a list of triplets of story, question and answer:

DATA_DIR = "../data"
TRAIN_FILE = os.path.join(DATA_DIR, "qa1_single-supporting-fact_train.txt")
TEST_FILE = os.path.join(DATA_DIR, "qa1_single-supporting-fact_test.txt")

def get_data(infile):
    stories, questions, answers = [], [], []
    story_text = []
    fin = open(TRAIN_FILE, "rb")
    for line in fin:
        line = line.decode("utf-8").strip()
        lno, text = line.split(" ", 1)
        if "t" in text:
            question, answer, _ = text.split("t")
            stories.append(story_text)
            questions.append(question)
            answers.append(answer)
            story_text = []
        else:
            story_text.append(text)
    fin.close()
    return stories, questions, answers

data_train = get_data(TRAIN_FILE)
data_test = get_data(TEST_FILE)

Our next step is to run through the texts in the generated lists and build our
vocabulary. This should be quite familiar to us by now, since we have used a
similar idiom a few times already. Unlike the previous time, our vocabulary is quite
small, only 22 unique words, so we will not have any out of vocabulary words:

def build_vocab(train_data, test_data):
    counter = collections.Counter()
    for stories, questions, answers in [train_data, test_data]:
        for story in stories:
            for sent in story:
                for word in nltk.word_tokenize(sent):
                    counter[word.lower()] += 1
                for question in questions:
                    for word in nltk.word_tokenize(question):
                         counter[word.lower()] += 1
                for answer in answers:
                    for word in nltk.word_tokenize(answer):
                         counter[word.lower()] += 1
    word2idx = {w:(i+1) for i, (w, _) in enumerate(counter.most_common())}
    word2idx["PAD"] = 0
idx2word = {v:k for k, v in word2idx.items()}
    return word2idx, idx2word

word2idx, idx2word = build_vocab(data_train, data_test)

vocab_size = len(word2idx)
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The memory network is based on RNNs, where each sentence in the story and
question is treated as a sequence of words, so we need to find out the maximum
length of the sequence for our story and question. The following block of code
does this. We find that the maximum length of a story is 14 words and the
maximum length of a question is just four words:

def get_maxlens(train_data, test_data):
    story_maxlen, question_maxlen = 0, 0
    for stories, questions, _ in [train_data, test_data]:
        for story in stories:
            story_len = 0
            for sent in story:
                swords = nltk.word_tokenize(sent)
                story_len += len(swords)
            if story_len > story_maxlen:
                story_maxlen = story_len
        for question in questions:
            question_len = len(nltk.word_tokenize(question))
            if question_len > question_maxlen:
                question_maxlen = question_len
    return story_maxlen, question_maxlen

story_maxlen, question_maxlen = get_maxlens(data_train, data_test)

As previously, the input to our RNNs is a sequence of word IDs. So we need to
use our vocabulary dictionary to convert the (story, question, and answer) triplet
into a sequence of integer word IDs. The next block of code does this and zero
pads the resulting sequences of story and answer to the maximum sequence lengths
we computed previously. At this point, we have lists of padded word ID sequences
for each triplet in the training and test sets:

def vectorize(data, word2idx, story_maxlen, question_maxlen):
    Xs, Xq, Y = [], [], []
    stories, questions, answers = data
    for story, question, answer in zip(stories, questions, answers):
        xs = [[word2idx[w.lower()] for w in nltk.word_tokenize(s)] 
                   for s in story]
        xs = list(itertools.chain.from_iterable(xs))
        xq = [word2idx[w.lower()] for w in nltk.word_tokenize(question)]
        Xs.append(xs)
        Xq.append(xq)
        Y.append(word2idx[answer.lower()])
    return pad_sequences(Xs, maxlen=story_maxlen),
        pad_sequences(Xq, maxlen=question_maxlen),
        np_utils.to_categorical(Y, num_classes=len(word2idx))

Xstrain, Xqtrain, Ytrain = vectorize(data_train, word2idx, story_maxlen, question_maxlen)
Xstest, Xqtest, Ytest = vectorize(data_test, word2idx, story_maxlen, question_maxlen)

We want to define the model. The definition is longer than we have seen
previously, so it may be convenient to refer to the diagram as you look through the
definition:
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There are two inputs to our model, the sequence of word IDs for the question and
that for the sentence. Each of these is passed into an Embedding layer to convert
the word IDs to a vector in the 64-dimensional embedding space. Additionally the
story sequence is passed through an additional embedding that projects it to an
embedding of size max_question_length. All these embedding layers start with random
weights and are trained jointly with the rest of the network.

The first two embeddings (story and question) are merged using a dot product to
form the network's memory. These represent words in the story and question that
are identical or close to each other in the embedding space. The output of the
memory is merged with the second story embedding and summed to form the
network response, which is once again merged with the embedding for the question
to form the response sequence. This response sequence is sent through an LSTM,
the context vector of which is sent to a dense layer to predict the answer, which
can be one of the words in the vocabulary.

The model is trained using the RMSprop optimizer and categorical cross-entropy as
the loss function:

EMBEDDING_SIZE = 64
LATENT_SIZE = 32

# inputs
story_input = Input(shape=(story_maxlen,))
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question_input = Input(shape=(question_maxlen,))

# story encoder memory
story_encoder = Embedding(input_dim=vocab_size,
output_dim=EMBEDDING_SIZE,
    input_length=story_maxlen)(story_input)
story_encoder = Dropout(0.3)(story_encoder)

# question encoder
question_encoder = Embedding(input_dim=vocab_size,
output_dim=EMBEDDING_SIZE,
    input_length=question_maxlen)(question_input)
question_encoder = Dropout(0.3)(question_encoder)

# match between story and question
match = dot([story_encoder, question_encoder], axes=[2, 2])

# encode story into vector space of question
story_encoder_c = Embedding(input_dim=vocab_size,
output_dim=question_maxlen,
    input_length=story_maxlen)(story_input)
story_encoder_c = Dropout(0.3)(story_encoder_c)

# combine match and story vectors
response = add([match, story_encoder_c])
response = Permute((2, 1))(response)

# combine response and question vectors
answer = concatenate([response, question_encoder], axis=-1)
answer = LSTM(LATENT_SIZE)(answer)
answer = Dropout(0.3)(answer)
answer = dense(vocab_size)(answer)
output = Activation("softmax")(answer)

model = Model(inputs=[story_input, question_input], outputs=output)
model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy"])

We train this network for 50 epochs with a batch size of 32 and achieve an
accuracy of over 81% on the validation set:

BATCH_SIZE = 32
NUM_EPOCHS = 50
history = model.fit([Xstrain, Xqtrain], [Ytrain], batch_size=BATCH_SIZE, 
    epochs=NUM_EPOCHS,
    validation_data=([Xstest, Xqtest], [Ytest]))

Here is the trace of the training logs:
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The change in training and validation loss and accuracy for this training run is
shown graphically in this graph:

We ran the model against the first 10 stories from our test set to verify how good
the predictions were:

ytest = np.argmax(Ytest, axis=1)
Ytest_ = model.predict([Xstest, Xqtest])
ytest_ = np.argmax(Ytest_, axis=1)

for i in range(NUM_DISPLAY):
    story = " ".join([idx2word[x] for x in Xstest[i].tolist() if x != 0])
    question = " ".join([idx2word[x] for x in Xqtest[i].tolist()])
    label = idx2word[ytest[i]]
    prediction = idx2word[ytest_[i]]
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    print(story, question, label, prediction)

As you can see, the predictions were mostly correct:
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Customizing Keras
Just as composing our basic building blocks into larger architectures enables us to
build interesting deep learning models, sometimes we need to look at the other end
of the spectrum. Keras has a lot of functionality built in already, so it is very likely
that you can build all your models with the provided components and not feel the
need for customization at all. In case you do need customization, Keras has you
covered.

As you will recall, Keras is a high level API that delegates to either a TensorFlow or
Theano backend for the computational heavy lifting. Any code you build for your
customization will call out to one of these backends. In order to keep your code
portable across the two backends, your custom code should use the Keras backend
API (https://keras.io/backend/), which provides a set of functions that act like a facade
over your chosen backend. Depending on the backend selected, the call to the
backend facade will translate to the appropriate TensorFlow or Theano call. The
full list of functions available and their detailed descriptions can be found on the
Keras backend page.

In addition to portability, using the backend API also results in more maintainable
code, since Keras code is generally more high-level and compact compared to
equivalent TensorFlow or Theano code. In the unlikely case that you do need to
switch to using the backend directly, your Keras components can be used directly
inside TensorFlow (not Theano though) code as described in this Keras blog (https://
blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html).

Customizing Keras typically means writing your own custom layer or custom
distance function. In this section, we will demonstrate how to build some simple
Keras layers. You will see more examples of using the backend functions to build
other custom Keras components, such as objectives (loss functions), in subsequent
sections.
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Keras example — using the
lambda layer
Keras provides a lambda layer; it can wrap a function of your choosing. For
example, if you wanted to build a layer that squares its input tensor element-wise,
you can say simply:

model.add(lambda(lambda x: x ** 2))

You can also wrap functions within a lambda layer. For example, if you want to
build a custom layer that computes the element-wise euclidean distance between
two input tensors, you would define the function to compute the value itself, as
well as one that returns the output shape from this function, like so:

def euclidean_distance(vecs):
    x, y = vecs
    return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True))

def euclidean_distance_output_shape(shapes):
    shape1, shape2 = shapes
    return (shape1[0], 1)

You can then call these functions using the lambda layer shown as follows:

lhs_input = Input(shape=(VECTOR_SIZE,))
lhs = dense(1024, kernel_initializer="glorot_uniform", activation="relu")(lhs_input)

rhs_input = Input(shape=(VECTOR_SIZE,))
rhs = dense(1024, kernel_initializer="glorot_uniform", activation="relu")(rhs_input)

sim = lambda(euclidean_distance, output_shape=euclidean_distance_output_shape)([lhs, rhs])
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Keras example — building
a custom normalization
layer
While the lambda layer can be very useful, sometimes you need more control. As
an example, we will look at the code for a normalization layer that implements a
technique called local response normalization. This technique normalizes the
input over local input regions, but has since fallen out of favor because it turned out
not to be as effective as other regularization methods such as dropout and batch
normalization, as well as better initialization methods.

Building custom layers typically involves working with the backend functions, so it
involves thinking about the code in terms of tensors. As you will recall, working
with tensors is a two step process. First, you define the tensors and arrange them in
a computation graph, and then you run the graph with actual data. So working at
this level is harder than working in the rest of Keras. The Keras documentation has
some guidelines for building custom layers (https://keras.io/layers/writing-your-own-keras-la
yers/), which you should definitely read.

One of the ways to make it easier to develop code in the backend API is to have a
small test harness that you can run to verify that your code is doing what you want
it to do. Here is a small harness I adapted from the Keras source to run your layer
against some input and return a result:

from keras.models import Sequential
from keras.layers.core import Dropout, Reshape

def test_layer(layer, x):
    layer_config = layer.get_config()
    layer_config["input_shape"] = x.shape
    layer = layer.__class__.from_config(layer_config)
    model = Sequential()
    model.add(layer)
    model.compile("rmsprop", "mse")
    x_ = np.expand_dims(x, axis=0)
    return model.predict(x_)[0]

And here are some tests with layer objects provided by Keras to make sure that the
harness runs okay:
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from keras.layers.core import Dropout, Reshape
from keras.layers.convolutional import ZeroPadding2D
import numpy as np

x = np.random.randn(10, 10)
layer = Dropout(0.5)
y = test_layer(layer, x)
assert(x.shape == y.shape)

x = np.random.randn(10, 10, 3)
layer = ZeroPadding2D(padding=(1,1))
y = test_layer(layer, x)
assert(x.shape[0] + 2 == y.shape[0])
assert(x.shape[1] + 2 == y.shape[1])

x = np.random.randn(10, 10)
layer = Reshape((5, 20))
y = test_layer(layer, x)
assert(y.shape == (5, 20))

Before we begin building our local response normalization layer, we need to take a
moment to understand what it really does. This technique was originally used with
Caffe, and the Caffe documentation (http://caffe.berkeleyvision.org/tutorial/layers/lrn.html)
describes it as a kind of lateral inhibition that works by normalizing over local
input regions. In ACROSS_CHANNEL mode, the local regions extend across nearby
channels but have no spatial extent. In WITHIN_CHANNEL mode, the local regions extend
spatially, but are in separate channels. We will implement the WITHIN_CHANNEL model
as follows. The formula for local response normalization in the WITHIN_CHANNEL
model is given by:

The code for the custom layer follows the standard structure. The __init__ method
is used to set the application specific parameters, that is, the hyperparameters
associated with the layer. Since our layer only does a forward computation and
doesn't have any learnable weights, all we do in the build method is to set the input
shape and delegate to the superclass's build method, which takes care of any
necessary book-keeping. In layers where learnable weights are involved, this
method is where you would set the initial values.

The call method does the actual computation. Notice that we need to account for
dimension ordering. Another thing to note is that the batch size is usually unknown
at design times, so you need to write your operations so that the batch size is not
explicitly invoked. The computation itself is fairly straightforward and follows the
formula closely. The sum in the denominator can also be thought of as average
pooling over the row and column dimension with a padding size of (n, n) and a
stride of (1, 1). Because the pooled data is averaged already, we no longer need to
divide the sum by n.
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The last part of the class is the get_output_shape_for method. Since the layer
normalizes each element of the input tensor, the output size is identical to the input
size:

from keras import backend as K
from keras.engine.topology import Layer, InputSpec

class LocalResponseNormalization(Layer):

    def __init__(self, n=5, alpha=0.0005, beta=0.75, k=2, **kwargs):
        self.n = n
        self.alpha = alpha
        self.beta = beta
        self.k = k
        super(LocalResponseNormalization, self).__init__(**kwargs)

    def build(self, input_shape):
        self.shape = input_shape
        super(LocalResponseNormalization, self).build(input_shape)

    def call(self, x, mask=None):
        if K.image_dim_ordering == "th":
            _, f, r, c = self.shape
        else:
            _, r, c, f = self.shape
        squared = K.square(x)
        pooled = K.pool2d(squared, (n, n), strides=(1, 1),
            padding="same", pool_mode="avg")
        if K.image_dim_ordering == "th":
            summed = K.sum(pooled, axis=1, keepdims=True)
            averaged = self.alpha * K.repeat_elements(summed, f, axis=1)
        else:
            summed = K.sum(pooled, axis=3, keepdims=True)
            averaged = self.alpha * K.repeat_elements(summed, f, axis=3)
        denom = K.pow(self.k + averaged, self.beta)
        return x / denom

    def get_output_shape_for(self, input_shape):
        return input_shape

You can test this layer during development using the test harness we described
here. It is easier to run this instead of trying to build a whole network to put this
into, or worse, waiting till you have fully specified the layer before running it:

x = np.random.randn(225, 225, 3)
layer = LocalResponseNormalization()
y = test_layer(layer, x)
assert(x.shape == y.shape)

While building custom Keras layers seems to be fairly commonplace among
experienced Keras developers, there are not too many examples available on the
Internet. This is probably because custom layers are usually built to serve a specific
narrow purpose and may not be widely useful. The variability also means that one
single example cannot demonstrate all the possibilities of what you can do with the
API. Now that you have a good idea of how to build a custom Keras layer, you
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might find it instructive to look at Keunwoo Choi's melspectogram (https://keunwoochoi.w
ordpress.com/2016/11/18/for-beginners-writing-a-custom-keras-layer/) and Shashank Gupta's
NodeEmbeddingLayer (http://shashankg7.github.io/2016/10/12/Custom-Layer-In-Keras-Graph-Embedd
ing-Case-Study.html).

296

https://keunwoochoi.wordpress.com/2016/11/18/for-beginners-writing-a-custom-keras-layer/
http://shashankg7.github.io/2016/10/12/Custom-Layer-In-Keras-Graph-Embedding-Case-Study.html


Generative models
Generative models are models that learn to create data similar to data it is trained
on. We saw one example of a generative model that learns to write prose similar to
Alice in Wonderland in Chapter 6, Recurrent Neural Network — RNN. In that
example, we trained a model to predict the 11th character of text given the first 10
characters. Yet another type of generative model is generative adversarial models
(GAN) that have recently emerged as a very powerful class of models—you saw
examples of GANs in Chapter 4, Generative Adversarial Networks and WaveNet.
The intuition for generative models is that it learns a good internal representation of
its training data, and is therefore able to generate similar data during the prediction
phase.

Another perspective on generative models is the probabilistic one. A typical
classification or regression network, also called a discriminative model, learns a
function that maps the input data X to some label or output y, that is, these models
learn the conditional probability P(y|X). On the other hand, a generative model
learns the joint probability and labels simultaneously, that is, P(x, y). This
knowledge can then be used to create probable new (X, y) samples. This gives
generative models the ability to explain the underlying structure of input data even
when there are no labels. This is a very important advantage in the real world, since
unlabeled data is more abundant than labeled data.

Simple generative models such as the example mentioned above can be extended to
audio as well, for example, models that learn to generate and play music. One
interesting one is described in the WaveNet paper (for more information refer
to: WaveNet: A Generative Model for Raw Audio, by A. van den Oord, 2016.)
which describes a network built using atrous convolutional layers and provides a
Keras implementation on GithHub (https://github.com/basveeling/wavenet).
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Keras example — deep
dreaming
In this example, we will look at a slightly different generative network. We will see
how to take a pre-trained convolutional network and use it to generate new objects
in an image. Networks trained to discriminate between images learn enough about
the images to generate them as well. This was first demonstrated by Alexander
Mordvintsev of Google and described in this Google Research blog post (https://resea
rch.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html). It was originally called
inceptionalism but the term deep dreaming became more popular to describe the
technique.

Deep dreaming takes the backpropagated gradient activations and adds it back to
the image, running the same process over and over in a loop. The network
optimizes the loss function in the process, but we get to see how it does so in the
input image (three channels) rather than in a high dimensional hidden layer that
cannot easily be visualized.

There are many variations to this basic strategy, each of which leads to new and
interesting effects. Some variations are blurring, adding constraints on the total
activations, decaying the gradient, infinitely zooming into the image by cropping
and scaling, adding jitter by randomly moving the image around, and so on. In our
example, we will show the simplest approach—we will optimize the gradient of the
mean of the selected layer's activation for each of the pooling layers of a pre-
trained VGG-16 and observe the effect on our input image.

First, as usual, we will declare our imports:

from keras import backend as K
from keras.applications import vgg16
from keras.layers import Input
import matplotlib.pyplot as plt
import numpy as np
import os

Next we will load up our input image. This image may be familiar to you from blog
posts about deep learning. The original image is from here (https://www.flickr.com/photo
s/billgarrett-newagecrap/14984990912):

DATA_DIR = "../data"
IMAGE_FILE = os.path.join(DATA_DIR, "cat.jpg")
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img = plt.imread(IMAGE_FILE)
plt.imshow(img)

The output of the preceding example is as follows:

Next we define a pair of functions to preprocess and deprocess the image to and
from a four-dimensional representation suitable for input to a pre-trained VGG-16
network:

def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
        img4d = np.expand_dims(img4d, axis=0)
        img4d = vgg16.preprocess_input(img4d)
    return img4d

def deprocess(img4d):
    img = img4d.copy()
    if K.image_dim_ordering() == "th":
        # (B, C, H, W)
        img = img.reshape((img4d.shape[1], img4d.shape[2],         img4d.shape[3]))
        # (C, H, W) -> (H, W, C)
        img = img.transpose((1, 2, 0))
    else:
        # (B, H, W, C)
        img = img.reshape((img4d.shape[1], img4d.shape[2], img4d.shape[3]))
    img[:, :, 0] += 103.939
    img[:, :, 1] += 116.779
    img[:, :, 2] += 123.68
    # BGR -> RGB
    img = img[:, :, ::-1]
    img = np.clip(img, 0, 255).astype("uint8")
return img
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These two functions are inverses of each other, that is, passing the image through
preprocess and then through deprocess will return the original image.

Next, we load up our pre-trained VGG-16 network. This network has been pre-
trained on ImageNet data and is available from the Keras distribution. You already
learned how to work with pre-trained models in Chapter 3, Deep Learning with
ConvNets. We select the version whose fully connected layers have been removed
already. Apart from saving us the trouble of having to remove them ourselves, this
also allows us to pass in any shape of image, since the reason we need to specify
the image width and height in our input is because this determines the size of the
weight matrices in the fully connected layers. Because CNN transformations are
local in nature, the size of the image doesn't affect the sizes of the weight matrices
for the convolutional and pooling layers. So the only constraint on image size is that
it must be constant within the batch:

img_copy = img.copy()
print("Original image shape:", img.shape)
p_img = preprocess(img_copy)
batch_shape = p_img.shape
dream = Input(batch_shape=batch_shape)
model = vgg16.VGG16(input_tensor=dream, weights="imagenet", include_top=False)

We will need to refer to the CNN's layer objects by name in our following
calculations, so let us construct a dictionary. We also need to understand the layer
naming convention, so we dump it out:

layer_dict = {layer.name : layer for layer in model.layers}
print(layer_dict)

The output of the preceding example is as follows:

{'block1_conv1': <keras.layers.convolutional.Convolution2D at 0x11b847690>,
 'block1_conv2': <keras.layers.convolutional.Convolution2D at 0x11b847f90>,
 'block1_pool': <keras.layers.pooling.MaxPooling2D at 0x11c45db90>,
 'block2_conv1': <keras.layers.convolutional.Convolution2D at 0x11c45ddd0>,
 'block2_conv2': <keras.layers.convolutional.Convolution2D at 0x11b88f810>,
 'block2_pool': <keras.layers.pooling.MaxPooling2D at 0x11c2d2690>,
 'block3_conv1': <keras.layers.convolutional.Convolution2D at 0x11c47b890>,
 'block3_conv2': <keras.layers.convolutional.Convolution2D at 0x11c510290>,
 'block3_conv3': <keras.layers.convolutional.Convolution2D at 0x11c4afa10>,
 'block3_pool': <keras.layers.pooling.MaxPooling2D at 0x11c334a10>,
 'block4_conv1': <keras.layers.convolutional.Convolution2D at 0x11c345b10>,
 'block4_conv2': <keras.layers.convolutional.Convolution2D at 0x11c345950>,
 'block4_conv3': <keras.layers.convolutional.Convolution2D at 0x11d52c910>,
 'block4_pool': <keras.layers.pooling.MaxPooling2D at 0x11d550c90>,
 'block5_conv1': <keras.layers.convolutional.Convolution2D at 0x11d566c50>,
 'block5_conv2': <keras.layers.convolutional.Convolution2D at 0x11d5b1910>,
 'block5_conv3': <keras.layers.convolutional.Convolution2D at 0x11d5b1710>,
 'block5_pool': <keras.layers.pooling.MaxPooling2D at 0x11fd68e10>,
 'input_1': <keras.engine.topology.InputLayer at 0x11b847410>}

We then compute the loss at each of the five pooling layers and compute the
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gradient of the mean activation for three steps each. The gradient is added back to
the image and the image displayed at each of the pooling layers for each step:

num_pool_layers = 5
num_iters_per_layer = 3
step = 100

for i in range(num_pool_layers):
    # identify each pooling layer
    layer_name = "block{:d}_pool".format(i+1)
    # build loss function that maximizes the mean activation in layer
    layer_output = layer_dict[layer_name].output
    loss = K.mean(layer_output)
    # compute gradient of image wrt loss and normalize
    grads = K.gradients(loss, dream)[0]
    grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
    # define function to return loss and grad given input image
    f = K.function([dream], [loss, grads])
    img_value = p_img.copy()
    fig, axes = plt.subplots(1, num_iters_per_layer, figsize=(20, 10))
    for it in range(num_iters_per_layer):
        loss_value, grads_value = f([img_value])
        img_value += grads_value * step 
        axes[it].imshow(deprocess(img_value))
    plt.show()

The resulting images are shown as follows:
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As you can see, the process of deep dreaming amplifies the effect of the gradient
on the chosen layer, resulting in images that are quite surreal. Later layers
backpropagate gradients that result in more distortion, reflecting their larger
receptive fields and their capacity to recognize more complex features.

To convince ourselves that a trained network really learns a representation of the
various categories of the image it was trained on, let us consider a completely
random image, shown next, and pass it through the pre-trained network:

img_noise = np.random.randint(100, 150, size=(227, 227, 3), dtype=np.uint8)
plt.imshow(img_noise)

The output of the preceding example is as follows:
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Passing this image through the preceding code results in very specific patterns at
each layer, as shown next, showing that the network is trying to find a structure in
the random data:
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We can repeat our experiment with the noise image as input and compute the loss
from a single filter instead of taking the mean across all the filters. The filter we
choose is for the ImageNet label African elephant (24). Thus, we replace the value
of the loss in the previous code with the following. So instead of computing the
mean across all filters, we calculate the loss as the output of the filter representing
the African elephant class:

loss = layer_output[:, :, :, 24]

We get back what looks very much like repeating images of the trunk of an
elephant in the block4_pool output, as shown here:
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Keras example — style
transfer
An extension of deep dreaming was described in this paper (for more information
refer to: Image Style Transfer Using Convolutional Neural Networks, by L. A.
Gatys, A. S. Ecker, and M. Bethge, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016), which showed that trained neural
networks, such as the VGG-16, learn both content and style, and these two can be
manipulated independently. Thus an image of an object (content) could be styled to
look like a painting by combining it with the image of a painting (style).

Let us start, as usual, by importing our libraries:

from keras.applications import vgg16
from keras import backend as K
from scipy.misc import imresize
import matplotlib.pyplot as plt
import numpy as np
import os

Our example will demonstrate styling our image of a cat with this image of a
reproduction of Claude Monet's The Japanese Bridge by Rosalind Wheeler (https://g
oo.gl/0VXC39):

DATA_DIR = "../data"
CONTENT_IMAGE_FILE = os.path.join(DATA_DIR, "cat.jpg")
STYLE_IMAGE_FILE = os.path.join(DATA_DIR, "JapaneseBridgeMonetCopy.jpg")
RESIZED_WH = 400

content_img_value = imresize(plt.imread(CONTENT_IMAGE_FILE), (RESIZED_WH, RESIZED_WH))
style_img_value = imresize(plt.imread(STYLE_IMAGE_FILE), (RESIZED_WH, RESIZED_WH))

plt.subplot(121)
plt.title("content")
plt.imshow(content_img_value)

plt.subplot(122)
plt.title("style")
plt.imshow(style_img_value)

plt.show()

The output of the preceding example is as follows:
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As previously, we declare our two functions to convert back and forth from the
image and the four-dimensional tensor that the CNN expects:

def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
    img4d = np.expand_dims(img4d, axis=0)
    img4d = vgg16.preprocess_input(img4d)
    return img4d

def deprocess(img4d):
    img = img4d.copy()
    if K.image_dim_ordering() == "th":
        # (B, C, H, W)
        img = img.reshape((img4d.shape[1], img4d.shape[2], img4d.shape[3]))
        # (C, H, W) -> (H, W, C)
        img = img.transpose((1, 2, 0))
    else:
        # (B, H, W, C)
        img = img.reshape((img4d.shape[1], img4d.shape[2], img4d.shape[3]))
    img[:, :, 0] += 103.939
    img[:, :, 1] += 116.779
    img[:, :, 2] += 123.68
    # BGR -> RGB
    img = img[:, :, ::-1]
    img = np.clip(img, 0, 255).astype("uint8")
    return img

We declare tensors to hold the content image and the style image, and another
tensor to hold the combined image. The content and style images are then
concatenated into a single input tensor. The input tensor will be fed to the pre-
trained VGG-16 network:

content_img = K.variable(preprocess(content_img_value))
style_img = K.variable(preprocess(style_img_value))
if K.image_dim_ordering() == "th":
    comb_img = K.placeholder((1, 3, RESIZED_WH, RESIZED_WH))
else:
    comb_img = K.placeholder((1, RESIZED_WH, RESIZED_WH, 3))

# concatenate images into single input
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input_tensor = K.concatenate([content_img, style_img, comb_img], axis=0)

We instantiate an instance of a pre-trained VGG-16 network, pre-trained with the
ImageNet data, and with the fully connected layers excluded:

model = vgg16.VGG16(input_tensor=input_tensor, weights="imagenet", include_top=False)

As previously, we construct a layer dictionary to map the layer name to the output
layer of the trained VGG-16 network:

layer_dict = {layer.name : layer.output for layer in model.layers}

The next block defines the code for computing the content_loss, the style_loss, and
the variational_loss. Finally, we define our loss as a linear combination of these
three losses:

def content_loss(content, comb):
    return K.sum(K.square(comb - content))

def gram_matrix(x):
    if K.image_dim_ordering() == "th":
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

def style_loss_per_layer(style, comb):
    S = gram_matrix(style)
    C = gram_matrix(comb)
    channels = 3
    size = RESIZED_WH * RESIZED_WH
    return K.sum(K.square(S - C)) / (4 * (channels ** 2) * (size ** 2))

def style_loss():
    stl_loss = 0.0
    for i in range(NUM_LAYERS):
        layer_name = "block{:d}_conv1".format(i+1)
        layer_features = layer_dict[layer_name]
        style_features = layer_features[1, :, :, :]
        comb_features = layer_features[2, :, :, :]
        stl_loss += style_loss_per_layer(style_features, comb_features)
    return stl_loss / NUM_LAYERS

def variation_loss(comb):
    if K.image_dim_ordering() == "th":
        dx = K.square(comb[:, :, :RESIZED_WH-1, :RESIZED_WH-1] - 
                      comb[:, :, 1:, :RESIZED_WH-1])
        dy = K.square(comb[:, :, :RESIZED_WH-1, :RESIZED_WH-1] - 
                      comb[:, :, :RESIZED_WH-1, 1:])
    else:
        dx = K.square(comb[:, :RESIZED_WH-1, :RESIZED_WH-1, :] - 
                      comb[:, 1:, :RESIZED_WH-1, :])
        dy = K.square(comb[:, :RESIZED_WH-1, :RESIZED_WH-1, :] - 
                      comb[:, :RESIZED_WH-1, 1:, :])
     return K.sum(K.pow(dx + dy, 1.25))
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CONTENT_WEIGHT = 0.1
STYLE_WEIGHT = 5.0
VAR_WEIGHT = 0.01
NUM_LAYERS = 5

c_loss = content_loss(content_img, comb_img)
s_loss = style_loss()
v_loss = variation_loss(comb_img)
loss = (CONTENT_WEIGHT * c_loss) + (STYLE_WEIGHT * s_loss) + (VAR_WEIGHT * v_loss)

Here the content loss is the root mean square distance (also known as L2 distance)
between the features of the content image extracted from the target layer and the
combination image. Minimizing this has the effect of keeping the styled image close
to the original one.

The style loss is the L2 distance between the gram matrices of the base image
representation and the style image. A gram matrix of a matrix M is the transpose of
M multiplied by M, that is, MT * M. This loss measures how often features appear
together in the content image representation and the style image. One practical
implication of this is that the content and style matrices must be square.

The total variation loss measures the difference between neighboring pixels.
Minimizing this has the effect that neighboring pixels will be similar so the final
image is smooth rather than jumpy.

We calculate the gradient and the loss function, and run our network in reverse for
five iterations:

grads = K.gradients(loss, comb_img)[0]
f = K.function([comb_img], [loss, grads])

NUM_ITERATIONS = 5
LEARNING_RATE = 0.001

content_img4d = preprocess(content_img_value)
for i in range(NUM_ITERATIONS):
    print("Epoch {:d}/{:d}".format(i+1, NUM_ITERATIONS))
    loss_value, grads_value = f([content_img4d])
    content_img4d += grads_value * LEARNING_RATE 
    plt.imshow(deprocess(content_img4d))
    plt.show()

The output from the last two iterations is shown as follows. As you can see, it has
picked up the impressionistic fuzziness and even the texture of the canvas in the
final images:
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Summary
In this chapter, we covered some deep learning networks that were not covered in
earlier chapters. We started with a brief look into the Keras functional API, which
allows us to build networks that are more complex than the sequential networks we
have seen so far. We then looked at regression networks, which allow us to do
predictions in a continuous space, and opens up a whole new range of problems we
can solve. However, a regression network is really a very simple modification of a
standard classification network. The next area we looked at was autoencoders,
which are a style of network that allows us to do unsupervised learning and make
use of the massive amount of unlabeled data that all of us have access to
nowadays. We also learned how to compose the networks we had already learned
about as giant Lego-like building blocks into larger and more interesting networks.
We then moved from building large networks using smaller networks, to learning
how to customize individual layers in a network using the Keras backend layer.
Finally, we looked at generative models, another class of models that learn to mimic
the input it is trained on, and looked at some novel uses for this kind of model.

In the next chapter, we will turn our attention to another learning style called
reinforcement learning, and explore its concepts by building and training a network
in Keras to play a simple computer game.
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AI Game Playing
In previous chapters, we looked at supervised learning techniques such as
regression and classification, and unsupervised learning techniques such as GANs,
autoencoders and generative models. In the case of supervised learning, we train
the network with the expected input and output and expect it to predict the output
given a new input. In the case of unsupervised learning, we show the network
some input and expect it to learn the structure of the data so that it can apply this
knowledge to a new input.

In this chapter, we will learn about reinforcement learning, or more specifically
deep reinforcement learning, that is, the application of deep neural networks to
reinforcement learning. Reinforcement learning has its roots in behavioral
psychology. An agent is trained by rewarding it for correct behavior and punishing
it for incorrect behavior. In the context of deep reinforcement learning, a network is
shown some input and is given a positive or negative reward based on whether it
produces the correct output from that input. Thus, in reinforcement learning, we
have sparse and time-delayed labels. Over many iterations, the network learns to
produce the correct output.

The pioneer in the deep reinforcement learning space was a small British company
called DeepMind, which in 2013 published a paper (for more information refer to:
Playing Atari with Deep Reinforcement Learning, by V. Mnih, arXiv:1312.5602,
2013.) describing how a convolutional neural network (CNN) could be taught to
play Atari 2600 video games by showing it screen pixels and giving it a reward
when the score increases. The same architecture was used to learn seven different
Atari 2600 games, in six of which the model outperformed all previous approaches,
and it outperformed a human expert in three.

Unlike the learning strategies we learned about previously, where each network
learns about a single discipline, reinforcement learning seems to be a general
learning algorithm that can be applied to a variety of environments; it may even be
the first step to general artificial intelligence. DeepMind has since been acquired by
Google, and the group has been on the forefront of AI research. A subsequent
paper (for more information refer to: Human-Level Control through Deep
Reinforcement Learning, by V. Mnih, Nature 518.7540, 2015: 529-533.) was
featured in the prestigious Nature journal in 2015, where they applied the same
model to 49 different games.

In this chapter, we will explore the theoretical framework that underlies deep
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reinforcement learning. We'll then apply this framework to build a network using
Keras that learns to play a game of catch. We'll briefly look at some ideas that can
make this network better as well as some promising new areas of research in this
space.

To sum up, we will learn the following core concepts around reinforcement learning
in this chapter:

Q-learning
Exploration versus exploitation
Experience replay
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Reinforcement learning
Our objective is to build a neural network to play the game of catch. Each game
starts with a ball being dropped from a random position from the top of the screen.
The objective is to move a paddle at the bottom of the screen using the left and
right arrow keys to catch the ball by the time it reaches the bottom. As games go,
this is quite simple. At any point in time, the state of this game is given by the (x, y)
coordinates of the ball and paddle. Most arcade games tend to have many more
moving parts, so a general solution is to provide the entire current game screen
image as the state. The following screenshot shows four consecutive screenshots of
our catch game:

Astute readers might note that our problem could be modeled as a classification
problem, where the input to the network are the game screen images and the output
is one of three actions--move left, stay, or move right. However, this would require
us to provide the network with training examples, possibly from recordings of
games played by experts. An alternative and simpler approach might be to build a
network and have it play the game repeatedly, giving it feedback based on whether
it succeeds in catching the ball or not. This approach is also more intuitive and is
closer to the way humans and animals learn.

The most common way to represent such a problem is through a markov decision
process (MDP). Our game is the environment within which the agent is trying to
learn. The state of the environment at time step t is given by st (and contains the
location of the ball and paddle). The agent can perform certain actions (such as
moving the paddle left or right). These actions can sometimes result in a reward rt,
which can be positive or negative (such as an increase or decrease in the score).
Actions change the environment and can lead to a new state st+1, where the agent
can perform another action at+1, and so on. The set of states, actions and rewards,
together with the rules for transitioning from one state to the other, make up a
markov decision process. A single game is one episode of this process, and is
represented by a finite sequence of states, actions, and rewards:
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Since, this is a markov decision process, the probability of state st+1 depends only
on current state st and action at.
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Maximizing future rewards
As an agent, our objective is to maximize the total reward from each game. The
total reward can be represented as follows:

In order to maximize the total reward, the agent should try to maximize the total
reward from any time point t in the game. The total reward at time step t is given
by Rt and is represented as:

However, it is harder to predict the value of the rewards the further we go into the
future. In order to take this into consideration, our agent should try to maximize the
total discounted future reward at time t instead. This is done by discounting the
reward at each future time step by a factor γ over the previous time step. If γ is 0,
then our network does not consider future rewards at all, and if γ is 1, then our
network is completely deterministic. A good value for γ is around 0.9. Factoring the
equation allows us to express the total discounted future reward at a given time step
recursively as the sum of the current reward and the total discounted future reward
at the next time step:
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Q-learning
Deep reinforcement learning utilizes a model-free reinforcement learning technique
called Q-learning. Q-learning can be used to find an optimal action for any given
state in a finite markov decision process. Q-learning tries to maximize the value of
the Q-function which represents the maximum discounted future reward when we
perform action a in state s:

Once we know the Q-function, the optimal action a at a state s is the one with the
highest Q-value. We can then define a policy Ï€(s) that gives us the optimal action
at any state:

We can define the Q-function for a transition point (st, at, rt, st+1) in terms of the
Q-function at the next point (st+1, at+1, rt+1, st+2) similar to how we did with the
total discounted future reward. This equation is known as the Bellman equation:

The Q-function can be approximated using the Bellman equation. You can think of
the Q-function as a lookup table (called a Q-table) where the states (denoted by s)
are rows and actions (denoted by a) are columns, and the elements (denoted by
Q(s, a)) are the rewards that you get if you are in the state given by the row and
take the action given by the column. The best action to take at any state is the one
with the highest reward. We start by randomly initializing the Q-table, then carry
out random actions and observe the rewards to update the Q-table iteratively
according to the following algorithm:

initialize Q-table Q
observe initial state s
repeat
   select and carry out action a
   observe reward r and move to new state s'
   Q(s, a) = Q(s, a) + α(r + γ max_a' Q(s', a') - Q(s, a))
   s = s'
until game over

You will realize that the algorithm is basically doing stochastic gradient descent on
the Bellman equation, backpropagating the reward through the state space (or
episode) and averaging over many trials (or epochs). Here α is the learning rate that
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determines how much of the difference between the previous Q-value and the
discounted new maximum Q-value should be incorporated.
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The deep Q-network as a
Q-function
We know that our Q-function is going to be a neural network, the natural question
is: what kind? For our simple example game, each state is represented by four
consecutive black and white screen images of size (80, 80), so the total number of
possible states (and the number of rows of our Q-table) is 280x80x4. Fortunately,
many of these states represent impossible or highly improbable pixel combinations.
Since convolutional neural networks have local connectivity (that is, each neuron is
connected to only a local region of its input), it avoids these impossible or
improbable pixel combinations. In addition, neural networks are generally very
good at coming up with good features for structured data such as images. Hence a
CNN can be used to model a Q-function very effectively.

The DeepMind paper (for more information refer to: Playing Atari with Deep
Reinforcement Learning, by V. Mnih, arXiv:1312.5602, 2013.), also uses three
layers of convolutions followed by two fully connected layers. Unlike traditional
CNNs used for image classification or recognition, there are no pooling layers. This
is because pooling layers makes the network less sensitive to the location of specific
objects in the image. In case of games this information is likely to be required to
compute the reward, and thus cannot be discarded.

The following diagram, shows the structure of the deep Q-network that is used for
our example. It follows the same structure as the original DeepMind paper except
for the input and output layer shapes. The shape for each of our inputs is (80, 80,
4): four black and white consecutive screenshots of the game console, each 80 x 80
pixels in size. Our output shape is (3), corresponding to the Q-value for each of
three possible actions (move left, stay, move right):
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Since our output are the three Q-values, this is a regression task, and we can
optimize this by minimizing the difference of the squared error between the current
value of Q(s, a) and its computed value in terms of the sum of the reward and the
discounted Q-value Q(s', a') one step into the future. The current value is already
known at the beginning of the iteration and the future value is computed based on
the reward returned by the environment:
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Balancing exploration with
exploitation
Deep reinforcement learning is an example of online learning, where the training
and prediction steps are interspersed. Unlike batch learning techniques where the
best predictor is generated by learning on the entire training data, a predictor trained
with online learning is continuously improving as it trains on new data.

Thus in the initial epochs of training, a deep Q-network gives random predictions
which can give rise to poor Q-learning performance. To alleviate this, we can use a
simple exploration method such as &epsi;-greedy. In case of &epsi;-greedy
exploration, the agent chooses the action suggested by the network with probability
1-&epsi; or an action uniformly at random otherwise. That is why this strategy is
called exploration/exploitation.

As the number of epochs increases and the Q-function converges, it begins to
return more consistent Q-values. The value of &epsi; can be attenuated to account
for this, so as the network begins to return more consistent predictions, the agent
chooses to exploit the values returned by the network over choosing random
actions. In case of DeepMind, the value of &epsi; decreases over time from 1 to
0.1, and in our example it decreases from 0.1 to 0.001.

Thus, &epsi;-greedy exploration ensures that in the beginning the system balances
the unreliable predictions made from the Q-network with completely random
moves to explore the state space, and then settles down to less aggressive
exploration (and more aggressive exploitation) as the predictions made by the Q-
network improve.
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Experience replay, or the
value of experience
Based on the equations that represent the Q-value for a state action pair (st, at) in
terms of the current reward rt and the discounted maximum Q-value for the next
time step (st+1, at+1), our strategy would logically be to train the network to predict
the best next state s' given the current state (s, a, r). It turns out that this tends to
drive the network into a local minimum. The reason for this is that consecutive
training samples tend to be very similar.

To counter this, during game play, we collect all the previous moves (s, a, r, s') into
a large fixed size queue called the replay memory. The replay memory represents
the experience of the network. When training the network, we generate random
batches from the replay memory instead of the most recent (batch of) transactions.
Since the batches are composed of random experience tuples (s, a, r, s') that are
out of order, the network trains better and avoids getting stuck in local minima.

Experiences could be collected from human gameplay as well instead of (or in
addition to) from previous moves during game play by the network. Yet another
approach is to collect experiences by running the network in observation mode for
a while in the beginning, when it generates completely random actions (  = 1) and
extracts the reward and next state from the game and collects them into its
experience replay queue.
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Example - Keras deep Q-
network for catch
The objective of our game is to catch a ball released from a random location from
the top of the screen with a paddle at the bottom of the screen by moving the
paddle horizontally using the left and right arrow keys. The player wins if the
paddle can catch the ball and loses if the balls falls off the screen before the paddle
gets to it. The game has the advantage of being very simple to understand and
build, and is modeled after the game of catch described by Eder Santana in his blog
post (for more information refer to: Keras Plays Catch, a Single File
Reinforcement Learning Example, by Eder Santana, 2017.) on deep reinforcement
learning. We built the original game using Pygame (https://www.pygame.org/news), a
free and open source library for building games. This game allows the player to
move the paddle using the left and right arrow keys. The game is available as
game.py in the code bundle for this chapter in case you want to get a feel for it.

Installing Pygame:
Pygame runs on top of Python, and is available for Linux (various
flavors), macOS, Windows, as well as some phone operating
systems such as Android and Nokia. The full list of distributions
can be found at: http://www.pygame.org/download.shtml. Pre-built
versions are available for 32-bit and 64-bit versions of Linux and
Windows and 64-bit version of macOS. On these platforms, you
can install Pygame with pip install pygame command.
If a pre-built version does not exist for your platform, you can also
build it from source using instructions available at: http://www.pyga
me.org/wiki/GettingStarted.
Anaconda users can find pre-built Pygame versions on the conda-
forge:
conda install binstar
conda install anaconda-client
conda install -c https://conda.binstar.org/tlatorre pygame # Linux
conda install -c https://conda.binstar.org/quasiben pygame # Mac

In order to train our neural network, we need to make some changes to the original
game so the network can play instead of the human player. We want to wrap the
game to allow the network to communicate with it via an API instead of the
keyboard left and right arrow keys. Let us look at the code for this wrapped game.
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As usual, we start with the imports:

from __future__ import division, print_function
import collections
import numpy as np
import pygame
import random
import os

We define our class. Our constructor can optionally set the wrapped version of the
game to run in headless mode, that is, without needing to display a Pygame screen.
This is useful where you have to run on a GPU box in the cloud and only have
access to a text based terminal. You can comment this line out if you are running
the wrapped game locally where you have access to a graphics terminal. Next we
call the pygame.init() method to initialize all Pygame components. Finally, we set a
bunch of class level constants:

class MyWrappedGame(object):

    def __init__(self):
        # run pygame in headless mode
        os.environ["SDL_VIDEODRIVER"] = "dummy"

        pygame.init()

        # set constants
        self.COLOR_WHITE = (255, 255, 255)
        self.COLOR_BLACK = (0, 0, 0)
        self.GAME_WIDTH = 400
        self.GAME_HEIGHT = 400
        self.BALL_WIDTH = 20
        self.BALL_HEIGHT = 20
        self.PADDLE_WIDTH = 50
        self.PADDLE_HEIGHT = 10
        self.GAME_FLOOR = 350
        self.GAME_CEILING = 10
        self.BALL_VELOCITY = 10
        self.PADDLE_VELOCITY = 20
        self.FONT_SIZE = 30
        self.MAX_TRIES_PER_GAME = 1
        self.CUSTOM_EVENT = pygame.USEREVENT + 1
        self.font = pygame.font.SysFont("Comic Sans MS", self.FONT_SIZE)

The reset() method defines the operations that need to be called at the start of each
game, such as clearing out the state queue, setting the ball, and paddle to their
starting positions, initializing the scores, and so on:

    def reset(self):
        self.frames = collections.deque(maxlen=4)
        self.game_over = False
        # initialize positions
        self.paddle_x = self.GAME_WIDTH // 2
        self.game_score = 0
        self.reward = 0
        self.ball_x = random.randint(0, self.GAME_WIDTH)
        self.ball_y = self.GAME_CEILING
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        self.num_tries = 0

        # set up display, clock, etc
        self.screen = pygame.display.set_mode((self.GAME_WIDTH, self.GAME_HEIGHT))
        self.clock = pygame.time.Clock()

In the original game, there is a Pygame event queue into which the left and right
arrow key events raised by the player as he moves the paddle, as well as internal
events raised by Pygame components are written to. The central part of the game
code is basically a loop (called the event loop), that reads the event queue and
reacts to it.

In the wrapped version, we have moved the event loop to the caller. The step()
method describes what happens in a single pass in the loop. The method takes an
integer 0, 1, or 2 representing an action (respectively move left, stay, and move
right), and then it sets variables that control the position of the ball and paddle at
this time step. The PADDLE_VELOCITY variable represents a speed that moves the
paddle that many pixels to the left or right when the move left and move right
actions are sent. If the ball has dropped past the paddle, it checks whether there is a
collision. If there is, the paddle catches the ball and the player (the neural network)
wins, otherwise the player loses. The method then redraws the screen and appends
it to the fixed length deque that contains the last four frames of the game screen.
Finally, it returns the state (given by the last four frames), the reward for the
current action and a flag that tells the caller if the game is over:

    def step(self, action):
        pygame.event.pump()

        if action == 0: # move paddle left
            self.paddle_x -= self.PADDLE_VELOCITY
            if self.paddle_x < 0:
                # bounce off the wall, go right
                self.paddle_x = self.PADDLE_VELOCITY
        elif action == 2: # move paddle right
            self.paddle_x += self.PADDLE_VELOCITY
            if self.paddle_x > self.GAME_WIDTH - self.PADDLE_WIDTH:
                # bounce off the wall, go left
                self.paddle_x = self.GAME_WIDTH - self.PADDLE_WIDTH - self.PADDLE_VELOCITY
        else: # don't move paddle
            pass

        self.screen.fill(self.COLOR_BLACK)
        score_text = self.font.render("Score: {:d}/{:d}, Ball: {:d}"
            .format(self.game_score, self.MAX_TRIES_PER_GAME,
                    self.num_tries), True, self.COLOR_WHITE)
        self.screen.blit(score_text, 
            ((self.GAME_WIDTH - score_text.get_width()) // 2,
            (self.GAME_FLOOR + self.FONT_SIZE // 2)))

        # update ball position
        self.ball_y += self.BALL_VELOCITY
        ball = pygame.draw.rect(self.screen, self.COLOR_WHITE,
            pygame.Rect(self.ball_x, self.ball_y, self.BALL_WIDTH, 
            self.BALL_HEIGHT))
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        # update paddle position
        paddle = pygame.draw.rect(self.screen, self.COLOR_WHITE,
            pygame.Rect(self.paddle_x, self.GAME_FLOOR, 
                        self.PADDLE_WIDTH, self.PADDLE_HEIGHT))

        # check for collision and update reward
        self.reward = 0
        if self.ball_y >= self.GAME_FLOOR - self.BALL_WIDTH // 2:
            if ball.colliderect(paddle):
                self.reward = 1
            else:
                self.reward = -1

        self.game_score += self.reward
        self.ball_x = random.randint(0, self.GAME_WIDTH)
        self.ball_y = self.GAME_CEILING
        self.num_tries += 1

        pygame.display.flip()

        # save last 4 frames
        self.frames.append(pygame.surfarray.array2d(self.screen))

        if self.num_tries >= self.MAX_TRIES_PER_GAME:
            self.game_over = True

        self.clock.tick(30)
        return np.array(list(self.frames)), self.reward, self.game_over

We will look at the code to train our network to play the game.

As usual, first we import the libraries and objects that we need. In addition to third-
party components from Keras and SciPy, we also import the wrapped_game class we
described previously:

from __future__ import division, print_function
from keras.models import Sequential
from keras.layers.core import Activation, Dense, Flatten
from keras.layers.convolutional import Conv2D
from keras.optimizers import Adam
from scipy.misc import imresize
import collections
import numpy as np
import os

import wrapped_game

We define two convenience functions. The first converts the set of four input
images to a form suitable for use by the network. The input comes in a set of four
800 x 800 images, so the shape of the input is (4, 800, 800). However, the network
expects its input as a four-dimensional tensor of shape (batch size, 80, 80, 4). At
the very beginning of the game, we don't have four frames, so we fake it by
stacking the first frame four times. The shape of the output tensor returned from
this function is (80, 80, 4).

The get_next_batch() function samples batch_size state tuples from the experience
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replay queue, and gets the reward and predicted next state from the neural
network. It then calculates the value of the Q-function at the next time step and
returns it:

def preprocess_images(images):
    if images.shape[0] < 4:
        # single image
        x_t = images[0]
        x_t = imresize(x_t, (80, 80))
        x_t = x_t.astype("float")
        x_t /= 255.0
        s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
    else:
        # 4 images
        xt_list = []
        for i in range(images.shape[0]):
            x_t = imresize(images[i], (80, 80))
            x_t = x_t.astype("float")
            x_t /= 255.0
            xt_list.append(x_t)
        s_t = np.stack((xt_list[0], xt_list[1], xt_list[2], xt_list[3]), 
                       axis=2)
    s_t = np.expand_dims(s_t, axis=0)
    return s_t

def get_next_batch(experience, model, num_actions, gamma, batch_size):
    batch_indices = np.random.randint(low=0, high=len(experience), 
        size=batch_size)
    batch = [experience[i] for i in batch_indices]
    X = np.zeros((batch_size, 80, 80, 4))
    Y = np.zeros((batch_size, num_actions))
    for i in range(len(batch)):
        s_t, a_t, r_t, s_tp1, game_over = batch[i]
        X[i] = s_t
        Y[i] = model.predict(s_t)[0]
        Q_sa = np.max(model.predict(s_tp1)[0])
        if game_over:
            Y[i, a_t] = r_t
        else:
            Y[i, a_t] = r_t + gamma * Q_sa
    return X, Y

We define our network. This is the network that models the Q-function for our
game. Our network is very similar to the one proposed in the DeepMind paper. The
only difference is the size of the input and the output. Our input shape is (80, 80,
4) while theirs was (84, 84, 4) and our output is (3) corresponding to the three
actions for which the value of the Q-function needs to be computed, whereas their
was (18), corresponding to the actions possible from Atari.

There are three convolutional layers and two fully connected (dense) layers. All
layers, except the last have the ReLU activation unit. Since we are predicting values
of Q-functions, it is a regression network and the last layer has no activation unit:

# build the model
model = Sequential()
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model.add(Conv2D(32, kernel_size=8, strides=4, 
                 kernel_initializer="normal", 
                 padding="same",
                 input_shape=(80, 80, 4)))
model.add(Activation("relu"))
model.add(Conv2D(64, kernel_size=4, strides=2, 
                 kernel_initializer="normal", 
                 padding="same"))
model.add(Activation("relu"))
model.add(Conv2D(64, kernel_size=3, strides=1,
                 kernel_initializer="normal",
                 padding="same"))
model.add(Activation("relu"))
model.add(Flatten())
model.add(Dense(512, kernel_initializer="normal"))
model.add(Activation("relu"))
model.add(Dense(3, kernel_initializer="normal"))

As we have described previously, our loss function is the squared difference
between the current value of Q(s, a) and its computed value in terms of the sum of
the reward and the discounted Q-value Q(s', a') one step into the future, so the
mean squared error (MSE) loss function works very well. For the optimizer, we
choose Adam, a good general-purpose optimizer, instantiated with a low learning
rate:

model.compile(optimizer=Adam(lr=1e-6), loss="mse")

We define some constants for our training. The NUM_ACTIONS constant defines the
number of output actions that the network can send to the game. In our case, these
actions are 0, 1, and 2, corresponding to move left, stay, and move right. The GAMMA
value is the discount factor  for future rewards. The INITIAL_EPSILON and
FINAL_EPSILON refer to starting and ending values for the  parameter in -greedy
exploration. The MEMORY_SIZE is the size of the experience replay queue. The
NUM_EPOCHS_OBSERVE refer to the number of epochs where the network is allowed to
explore the game by sending it completely random actions and seeing the rewards.
The NUM_EPOCHS_TRAIN variable refers to the number of epochs the network will
undergo online training. Each epoch corresponds to a single game or episode. The
total number of games played for a training run is the sum of the NUM_EPOCHS_OBSERVE
and NUM_EPOCHS_TRAIN values. The BATCH_SIZE is the size of the mini-batch that we will
use for training:

# initialize parameters
DATA_DIR = "../data"
NUM_ACTIONS = 3 # number of valid actions (left, stay, right)
GAMMA = 0.99 # decay rate of past observations
INITIAL_EPSILON = 0.1 # starting value of epsilon
FINAL_EPSILON = 0.0001 # final value of epsilon
MEMORY_SIZE = 50000 # number of previous transitions to remember
NUM_EPOCHS_OBSERVE = 100
NUM_EPOCHS_TRAIN = 2000

BATCH_SIZE = 32
NUM_EPOCHS = NUM_EPOCHS_OBSERVE + NUM_EPOCHS_TRAIN
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We instantiate the game and the experience replay queue. We also open up a log file
and initialize some variables in preparation for training:

game = wrapped_game.MyWrappedGame()
experience = collections.deque(maxlen=MEMORY_SIZE)

fout = open(os.path.join(DATA_DIR, "rl-network-results.tsv"), "wb")
num_games, num_wins = 0, 0
epsilon = INITIAL_EPSILON

Next up, we set up the loop that controls the number of epochs of training. As
noted previously, each epoch corresponds to a single game, so we reset the game
state at this point. A game corresponds to a single episode of a ball falling from the
ceiling and either getting caught by the paddle or being missed. The loss is the
squared difference between the predicted and actual Q-value for the game.

We start the game off by sending it a dummy action (in our case, a stay) and get
back the initial state tuple for the game:

for e in range(NUM_EPOCHS):
    game.reset() 
    loss = 0.0

    # get first state
    a_0 = 1 # (0 = left, 1 = stay, 2 = right)
    x_t, r_0, game_over = game.step(a_0) 
    s_t = preprocess_images(x_t)

The next block is the main loop of the game. This is the event loop in the original
game that we moved to the calling code. We save the current state because we will
need that for our experience replay queue, then decide what action signal to send
the wrapped game. If we are in observation mode, we will just generate a random
number corresponding to one of our actions, otherwise we will use -greedy
exploration to either select a random action or use our neural network (which we
are also training) to predict the action we should send:

    while not game_over:
        s_tm1 = s_t

        # next action
        if e <= NUM_EPOCHS_OBSERVE:
            a_t = np.random.randint(low=0, high=NUM_ACTIONS, size=1)[0]
        else:
            if np.random.rand() <= epsilon:
                a_t = np.random.randint(low=0, high=NUM_ACTIONS, size=1)[0]
            else:
                q = model.predict(s_t)[0]
                a_t = np.argmax(q)

Once we know our action, we send it to the game by calling game.step(), which
returns the new state, the reward and a Boolean flag indicating the game is over. If
the reward is positive (indicating that the ball was caught), we increment the
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number of wins, and we store this (state, action, reward, new state, game over)
tuple in our experience replay queue:

        # apply action, get reward
        x_t, r_t, game_over = game.step(a_t)
        s_t = preprocess_images(x_t)
        # if reward, increment num_wins
        if r_t == 1:
            num_wins += 1
        # store experience
        experience.append((s_tm1, a_t, r_t, s_t, game_over))

We then draw a random mini-batch from our experience replay queue and train our
network. For each session of training, we compute the loss. The sum of the losses
for all the trainings in each epoch is the loss for the entire epoch:

        if e > NUM_EPOCHS_OBSERVE:
            # finished observing, now start training
            # get next batch
            X, Y = get_next_batch(experience, model, NUM_ACTIONS, GAMMA, BATCH_SIZE)
            loss += model.train_on_batch(X, Y)

When the network is relatively untrained, its predictions are not very good, so it
makes sense to explore the state space more in an effort to reduce the chances of
getting stuck in a local minima. However, as the network gets more and more
trained, we reduce the value of  gradually so the model gets to predict more and
more of the actions the network sends to the game:

    # reduce epsilon gradually
    if epsilon > FINAL_EPSILON:
        epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / NUM_EPOCHS

We write out a per epoch log both on console and into a log file for later analysis.
After 100 epochs of training, we save the current state of the model so that we can
recover in case we decide to stop training for any reason. We also save our final
model so that we can use it to play our game later:

    print("Epoch {:04d}/{:d} | Loss {:.5f} | Win Count {:d}"
        .format(e + 1, NUM_EPOCHS, loss, num_wins))
    fout.write("{:04d}t{:.5f}t{:d}n".format(e + 1, loss, num_wins))

    if e % 100 == 0:
        model.save(os.path.join(DATA_DIR, "rl-network.h5"), overwrite=True)

fout.close()
model.save(os.path.join(DATA_DIR, "rl-network.h5"), overwrite=True)

We trained the game by making it observe 100 games, followed by playing 1,000,
2,000, and 5,000 games respectively. The last few lines of the log file for the 5,000
game run are shown next. As you can see, towards the end of the training, the
network gets quite skilled at playing the game:
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The plot of loss and win count over epoch, shown in the following graph, also tells
a similar story. While it does look like the loss could converge further with more
training, it has gone down from 0.6 to around 0.1 in 5000 epochs of training.
Similarly, the plot of the number of wins curve upward, showing that the network
is learning faster as the number of epochs increases:

Finally, we evaluate the skill of our trained model by making it play a fixed number
of games (100 in our case) and seeing how many it can win. Here is the code to do
this. As previously, we start with our imports:

from __future__ import division, print_function
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from keras.models import load_model
from keras.optimizers import Adam
from scipy.misc import imresize
import numpy as np
import os
import wrapped_game

We load up the model we had saved at the end of training and compile it. We also
instantiate our wrapped_game:

DATA_DIR = "../data"
model = load_model(os.path.join(DATA_DIR, "rl-network.h5"))
model.compile(optimizer=Adam(lr=1e-6), loss="mse")

game = wrapped_game.MyWrappedGame()

We then loop over 100 games. We instantiate each game by calling its reset()
method, and start it off. Then, for each game, until it is over, we call on the model
to predict the action with the best Q-function. We report a running total of how
many games it won.

We ran the test with each of our models. The first one that was trained for 1,000
games won 42 of 100 games, the one trained for 2,000 games won 74 of 100
games, and the one trained for 5,000 games won 87 of 100 games. This clearly
shows that the network is improving with training:

num_games, num_wins = 0, 0
for e in range(100):
    game.reset()

    # get first state
    a_0 = 1 # (0 = left, 1 = stay, 2 = right)
    x_t, r_0, game_over = game.step(a_0) 
    s_t = preprocess_images(x_t)

    while not game_over:
        s_tm1 = s_t
        # next action
        q = model.predict(s_t)[0]
        a_t = np.argmax(q)
        # apply action, get reward
        x_t, r_t, game_over = game.step(a_t)
        s_t = preprocess_images(x_t)
        # if reward, increment num_wins
        if r_t == 1:
            num_wins += 1

    num_games += 1
    print("Game: {:03d}, Wins: {:03d}".format(num_games, num_wins), end="r")
print("")

If you run the evaluation code with the call to run it in headless mode commented
out, you can watch the network playing the game and it's quite amazing to watch.
Given that the Q-value predictions start off as random values and that it's mainly
the sparse reward mechanism that provides the guidance to the network during
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training, it is almost unreasonable that the network learns to play the game this
effectively. But as with other areas of deep learning, the network does in fact learn
to play quite well.

The example presented previously is fairly simple, but it illustrates the process by
which deep reinforcement learning models work, and hopefully has helped create a
mental model using which you can approach more complex implementations. One
implementation you might find interesting is Ben Lau's implementation of
FlappyBird (for more information refer to: Using Keras and Deep Q-Network to
Play FlappyBird, by Ben Lau, 2016. and GitHub page: https://github.com/yanpanlau/Ker
as-FlappyBird) using Keras. The Keras-RL project (https://github.com/matthiasplappert/keras-
rl), a Keras library for deep reinforcement learning, also has some very good
examples.

Since the original proposal from DeepMind, there have been other improvements
suggested, such as double Q-learning (for more information refer to: Deep
Reinforcement Learning with Double Q-Learning, by H. Van Hasselt, A. Guez,
and D. Silver, AAAI. 2016), prioritized experience replay (for more information
refer to: Prioritized Experience Replay, by T. Schaul, arXiv:1511.05952, 2015),
and dueling network architectures (for more information refer to: Dueling Network
Architectures for Deep Reinforcement Learning, by Z. Wang, arXiv:1511.06581,
2015). Double Q-learning uses two networks - the primary network chooses the
action and the target network chooses the target Q-value for the action. This
reduces possible overestimation of Q-values by the single network, and allows the
network to train quicker and better. Prioritized experience replay increases the
probability of sampling experience tuples with a higher expected learning progress.
Dueling network architectures decompose the Q-function into state and action
components and combine them back separately.

All of the code discussed in this section, including the base game that can be played
by a human player, is available in the code bundle accompanying this chapter.
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The road ahead
In January 2016, DeepMind announced the release of AlphaGo (for more
information refer to: Mastering the Game of Go with Deep Neural Networks and
Tree Search, by D. Silver, Nature 529.7587, pp. 484-489, 2016), a neural network
to play the game of Go. Go is regarded as a very challenging game for AIs to play,
mainly because at any point in the game, there are an average of approximately
10170 possible (for more information refer to: http://ai-depot.com/LogicGames/Go-Complexi

ty.html) moves (compared with approximately 1050 for chess). Hence determining
the best move using brute force methods is computationally infeasible. At the time
of publication, AlphaGo had already won 5-0 in a 5-game competition against the
current European Go champion, Fan Hui. This was the first time that any computer
program had defeated a human player at Go. Subsequently, in March 2016,
AlphaGo won 4-1 against Lee Sedol, the world's second professional Go player.

There were several notable new ideas that went into AlphaGo. First, it was trained
using a combination of supervised learning from human expert games and
reinforcement learning by playing one copy of AlphaGo against another. You have
seen applications of both these ideas in previous chapters.

Second, AlphaGo was composed of a value network and a policy network. During
each move, AlphaGo uses Monte Carlo simulation, a process used to predict the
probability of different outcomes in the future in the presence of random
variables, to imagine many alternative games starting from the current position. The
value network is used to reduce the depth of the tree search to estimate win/loss
probability without having to compute all the way to the end of the game, sort of
like an intuition about how good the move is. The policy network is used to reduce
the breadth of the search by guiding the search towards actions that promise the
maximum immediate reward (or Q-value). For a more detailed description, please
refer to the blog post: AlphaGo: Mastering the ancient game of Go with Machine
Learning, Google Research Blog, 2016.

While AlphaGo was a major improvement over the original DeepMind network, it
was still playing a game where all the players can see all the game pieces, that is,
they are still games of perfect information. In January, 2017, researchers at
Carnegie Mellon University announced Libratus (for more information refer to: AI
Takes on Top Poker Players, by T. Revel, New Scientist 223.3109, pp. 8, 2017),
an AI that plays Poker. Simultaneously, another group comprised of researchers
from the University of Alberta, Charles University of Prague, and Czech Technical
University (also from Prague), have proposed the DeepStack architecture (for more
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information refer to: DeepStack: Expert-Level Artificial Intelligence in No-Limit
Poker, by M. Moravaak, arXiv:1701.01724, 2017) to do the same thing. Poker is a
game of imperfect information, since a player cannot see the opponent's cards. So,
in addition to learning how to play the game, the Poker playing AI also needs to
develop an intuition about the opponent's game play.

Rather than use a built-in strategy for its intuition, Libratus has an algorithm that
computes this strategy by trying to achieve a balance between risk and reward, also
known as the Nash equilibrium. From January 11, 2017 to January 31, 2017,
Libratus was pitted against four top human Poker players (for more information
refer to: Upping the Ante: Top Poker Pros Face Off vs. Artificial Intelligence,
Carnegie Mellon University, January 2017), and beat them resoundingly.

DeepStack's intuition is trained using reinforcement learning, using examples
generated from random Poker situations. It has played 33 professional Poker
players from 17 countries and has a win rating that makes it an order of magnitude
better than a good player rating (for more information refer to: The Uncanny
Intuition of Deep Learning to Predict Human Behavior, by C. E. Perez, Medium
corporation, Intuition Machine, February 13, 2017).

As you can see, these are very exciting times indeed. Advances that started with
deep learning networks able to play arcade games have led to networks that can
effectively read your mind, or at least anticipate (sometimes non-rational) human
behavior and win at games of bluffing. The possibilities with deep learning seem to
be just limitless.
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Summary
In this chapter, we have learned the concepts behind reinforcement learning, and
how it can be used to build deep learning networks with Keras that learn how to
play arcade games based on reward feedback. From there, we moved on to briefly
discuss advances in this field, such as networks that have been taught to play
harder games such as Go and Poker at a superhuman level. While game playing
might seem like a frivolous application, these ideas are the first step towards general
artificial intelligence, where a network learns from experience rather than large
amounts of training data.
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Conclusion
Congratulations on making it to the end of the book! Let us take a moment and see
how far we have come since we started.

If you are like most readers, you started with some knowledge of Python and some
background in machine learning, but you were interested in learning more about
deep learning and wanted to be able to apply these deep learning skills using
Python.

You learned how to install Keras on your machine and started using it to build
simple deep learning models. You then learned about the original deep learning
model, the multi-layer perceptron, also called the fully connected network (FCN).
You learned how to build this network using Keras.

You also learned about the many tunable parameters that you need to tweak to get
good results from your network. With Keras, a lot of the hard work has been done
for you since it comes with sensible defaults, but there are occasions where this
knowledge will be helpful to you.

Continuing on from there, you were introduced to convolutional neural network
(CNN), originally built to exploit feature locality of images, although you can also
use them for other types of data such as text, audio or video. Once again, you saw
how to build a CNN using Keras. You also saw the functionality that Keras
provides to build CNNs easily and intuitively. You saw how to use pre-trained
image networks to make predictions about your own images, via the process of
transfer learning and fine-tuning.

From there, you learned about generative adversarial network (GAN), which are
a pair of networks (usually CNN) that attempt to work against each other and, in
the process, make each other stronger. GANs are a cutting-edge technology in the
deep learning space; a lot of recent work is going on around GANs.

From there, we turned our attention to text and we learned about word
embeddings, which have become the most common technology used for the
vector representation of text in the last couple of years. We looked at various
popular word embedding algorithms and saw how to use pre-trained word
embeddings to represent collections of words, as well as support for word
embeddings in Keras and gensim.

We then looked at recurrent neural network (RNN), a class of neural network
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optimized for handing sequence data such as text or time series. We learned about
the shortcomings of the basic RNN model and how these are alleviated in the more
powerful variants such as the long short term model (LSTM) and gated
recurrent unit (GRU). We looked at a few examples where these components are
used. We also looked briefly at Stateful RNN models and where they might be
used.

Next up, we looked at a few additional models that don't quite fit the molds of the
models we have spoken so far. Among them are autoencoders, a model for
unsupervised learning—regression networks that predict a continuous value rather
than a discrete label. We introduced the Keras functional API, which allows us to
build complex networks with multiple inputs and outputs and share components
among multiple pipelines. We looked at ways to customize Keras to add
functionality that doesn't currently exist.

Finally, we looked at training deep learning networks using reinforcement learning
in the context of playing arcade games, which many consider a first step toward a
general artificial intelligence. We provided a Keras example of training a simple
game. We then briefly described advances in this field in the context of networks
playing even harder games such as Go and Poker at a superhuman level.

We believe you are now equipped with the skills to solve new machine learning
problems using deep learning and Keras. This is an important and valuable skill in
your journey to becoming a deep learning expert.

We would like to thank you for letting us help you on your journey to deep learning
mastery.
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Keras 2.0 — what is new
According to Francois Chollet, Keras was released two years ago, in March, 2015.
It then proceeded to grow from one user to one hundred thousand. The following
image, taken from the Keras blog, shows the growth of number of Keras users
over time.

" "

One important update with Keras 2.0 is that the API will now be a part of
TensorFlow, starting with TensorFlow 1.2. Indeed, Keras is becoming more and
more the lingua franca for deep learning, a spec used in an increasing number of
deep learning contexts. For instance, Skymind is implementing Keras spec in Scala
for ScalNet, and Keras.js is doing the same for JavaScript for running of deep
learning directly in the browser. Efforts are also underway to provide a Keras API
for MXNET and CNTK deep learning toolkits.
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Installing Keras 2.0
Installing Keras 2.0 is very simple via the pip install keras --upgrade followed by
pip install tensorflow --upgrade.
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API changes
The Keras 2.0 changes implied the need to rethink some APIs. For full details,
please refer to the release notes (https://github.com/fchollet/keras/wiki/Keras-2.0-release-
notes). This module legacy.py summarizes the most impactful changes and
prevents warnings when using Keras 1.x calls:

""
Utility functions to avoid warnings while testing both Keras 1 and 2.
"""
import keras
keras_2 = int(keras.__version__.split(".")[0]) > 1 # Keras > 1

def fit_generator(model, generator, epochs, steps_per_epoch):
    if keras_2:
        model.fit_generator(generator, epochs=epochs, steps_per_epoch=steps_per_epoch)
    else:
        model.fit_generator(generator, nb_epoch=epochs, samples_per_epoch=steps_per_epoch)

def fit(model, x, y, nb_epoch=10, *args, **kwargs):
    if keras_2:
        return model.fit(x, y, *args, epochs=nb_epoch, **kwargs)
    else:
        return model.fit(x, y, *args, nb_epoch=nb_epoch, **kwargs)

def l1l2(l1=0, l2=0):
    if keras_2:
        return keras.regularizers.L1L2(l1, l2)
    else:
        return keras.regularizers.l1l2(l1, l2)

def Dense(units, W_regularizer=None, W_initializer='glorot_uniform', **kwargs):
    if keras_2:
        return keras.layers.Dense(units, kernel_regularizer=W_regularizer, kernel_initializer=W_initializer, **kwargs)
    else:
        return keras.layers.Dense(units, W_regularizer=W_regularizer, 
                                  init=W_initializer, **kwargs)

def BatchNormalization(mode=0, **kwargs):
    if keras_2:
        return keras.layers.BatchNormalization(**kwargs)
    else:
        return keras.layers.BatchNormalization(mode=mode, **kwargs)

def Convolution2D(units, w, h, W_regularizer=None, W_initializer='glorot_uniform', border_mode='same', **kwargs):
    if keras_2:
        return keras.layers.Conv2D(units, (w, h), padding=border_mode,
                                   kernel_regularizer=W_regularizer,
                                   kernel_initializer=W_initializer,
                                   **kwargs)
    else:
        return keras.layers.Conv2D(units, w, h, border_mode=border_mode, W_regularizer=W_regularizer, init=W_initializer, **kwargs)
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def AveragePooling2D(pool_size, border_mode='valid', **kwargs):
    if keras_2:
        return keras.layers.AveragePooling2D(pool_size=pool_size, 
                                             padding=border_mode, **kwargs)
    else:
        return keras.layers.AveragePooling2D(pool_size=pool_size, 
                                             border_mode=border_mode, **kwargs)

There are also a number of breaking changes. In particular:

The maxout dense, time distributed dense, and highway legacy layers have
been removed
The batch normalization layer no longer supports the mode argument,
because Keras internals have changed
Custom layers have to be updated
Any undocumented Keras functionality could have broken

In addition, the Keras code base has been instrumented to detect the use of the
Keras 1.x API calls and show deprecation warnings that show how to change the
call to conform to the Keras 2 API. If you have some volume of Keras 1.x code
already and are hesitant to try Keras 2 because of the fear of non-breaking
changes, these deprecation warnings from the Keras 2 code base can be very
helpful in making the transition.
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